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Abstract  
This paper demonstrates that, under weak assumptions, estimates from 
production function regressions using firm-level data are often inconsistent with 
profit maximization or imply implausibly large profits. Theoretically, the puzzle 
can be reconciled by relaxing the assumption of the perfect elasticity of factor 
supplies. Econometrically, the puzzle arises because of the transmission bias in 
OLS, endogeneity of factor prices in FIML/IV, and poor identification 
inversion-based/control-function estimators and GMM/IV estimators that use 
lags of endogenous variables as instruments. I argue that simple structural 
estimators can address both theoretical and econometric problems. Specifically, 
the paper proposes a full-information estimator that estimates the cost and the 
revenue functions simultaneously and treats unobserved heterogeneity in 
productivity and factor prices symmetrically. The strength of the proposed 
estimator is illustrated by Monte Carlo simulations and an empirical application. 
Finally, the paper argues that the profit share in revenue is a robust non-
parametric economic diagnostic for estimates of returns to scale. 
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1. INTRODUCTION 

Production functions estimated on firm-level data sets can provide important insights into micro- 

and macroeconomic phenomena. The micro-level data, however, have important limitations. At 

the firm level, revenue and costs are well measured but prices and quantities are not. Commonly, 

firm revenues are deflated by industry price indices to get a measure of quantity. I argue that this 

measure of quantity, when used as the dependent variable in production function regressions, is 

effectively the firm’s revenue, and not (physical) output. Thus, the estimated returns to scale are 

returns in revenue, not production. This robust result has important implications for the 

estimation and interpretation of returns to scale.  

I show that if firms face perfectly competitive factor markets, a common assumption, 

then returns to scale (RTS) in the revenue function cannot exceed unity otherwise the profit share 

in revenue is negative. Least squares estimates of RTS frequently exceed unity (e.g., Griliches 

and Ringstad 1971, Tybout and Westbrook 1996, Bartelsman and Dhrymes 1998), a finding can 

be explained by the transmission bias identified by Marschak and Andrews (1944). Yet, 

empirical estimates of RTS often exceed unity even after correcting for the transmission bias 

(e.g., Pavcnik 2002, Levinsohn and Petrin 2003). In other words, these estimates suggest that 

firms systematically violate the profit maximization principle. Thus, finding a convex revenue 

function raises legitimate concerns about the validity of the applied economic model and 

statistical estimator. 

At the other extreme, studies often find low returns to scale in the revenue function. If 

factor markets are competitive, these low returns to scale in the revenue function imply a much 

larger profit share in revenue than is observed in the data. For example, 0.8 returns in the revenue 

function entails a profit share of 20% in revenue (or 50% in value added if the share of materials 

is 0.6). In most data the profit share is 3% or less (Rotemberg and Woodford 1995, Basu and 

Fernald 1997). Griliches and Hausman (1986) attribute low returns to large, (possibly) serially 

correlated measurement errors, which are hard to handle in the instrumental variables (IV) 

framework as there are few good instruments to cope with measurement errors. It is not clear, 

however, why measurement errors are so pervasive in some industries and not others.  

To address these problems, I consider a cost-minimizing firm that can face upward- or 

downward-sloping factor supply curves. Under weak assumptions, I link the profit share, the 
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elasticity of the cost with respect to inputs, returns to scale in production and the markup. I 

suggest that the profit share can serve as a robust non-parametric diagnostic for checking if the 

estimates of production functions make economic sense. Using this model, I reconcile increasing 

returns to scale in the revenue function and a small profit share. Likewise, I can explain large 

decreasing returns to scale and small profit share.  

Unfortunately, available estimators either do not estimate the elasticity of the cost or 

depend critically on the assumption that factor supply curves are perfectly elastic. Furthermore, I 

identify empirically plausible cases when popular estimators of production functions are likely to 

perform poorly and, thus, produce the puzzles. In particular, I argue that method of moments 

estimators such as Blundell and Bond (1999) can be poorly identified because of economic 

restrictions on the comovement of inputs and output in the context of estimating production 

functions.1 I also argue that inversion estimators such as Olley and Pakes (1996), Pavcnik 

(2002), and Levinsohn and Petrin (2003) are inconsistent because they ignore variation in input 

mixes (e.g., variation in the materials/labor ratio). Similarly, if there is measurement error, the 

inversion estimators are invalid because there is no one-to-one inversion from observed choices 

of firms to their technology. Interestingly, least squares estimates of returns to scale in the 

revenue function are likely to have a relatively small bias.  

I argue that simple structural estimators can address these problems and can provide an 

estimate of the elasticity of the cost. Specifically, I extend the full information maximum 

likelihood estimator of Marschak and Andrews (1944) and Schmidt (1988) to dynamic 

production function models with serially correlated measurement errors and factor prices 

correlated with productivity. This estimator, which I call the covariance estimator, deals 

simultaneously with production and cost sides and with unobserved technology and factor prices. 

The key idea of the estimator is to use the covariance structures for the firms’ observed choices 

(inputs, outputs) to estimate parameters of the production function using the restrictions imposed 

by the economic model on the response of observed variables to unobservables such as 

productivity and factor prices. In some cases, the covariance estimator has an instrumental 

variable interpretation. I show that the covariance estimator outperforms popular alternatives in 

Monte Carlo experiments and yields economically more reasonable estimates than those from 

alternative estimators when confronted with the real data.  

                                                 
1 This source of poor identification is different from issues arising in very persistent series.  
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More broadly, I argue that consistent estimation of production function parameters 

requires modeling not only unobserved technology but also unobserved factor prices and other 

structural shocks. Sweeping the latter variation under the “ceteris paribus” rug can greatly distort 

measures of productivity, resource reallocation, calibration of economic models, etc. It is equally 

important to model both revenue and cost side of optimizing firms. The compensation for extra 

effort in economic modeling for structural estimators is better understating of the firm’s 

behavior. 

The structure of the paper is as follows. In the next section, I present theoretical results 

and discuss the sources of identification in production functions and examine the variables used 

in the production function regressions. In Section 3, I present the covariance estimator and 

discuss identification and estimation issues. In Section 4, I derive the theoretical predictions 

about the performance of OLS, instrumental variables and inversion estimators. Monte Carlo 

experiments in Section 5 illustrate the performance of alternative estimators. In Section 6, I use a 

well-known Chilean firm-level data to compare RTS estimates from the covariance estimator and 

popular alternatives. I present conclusions in Section 7.  

2. SETUP 
In this section, I derive the relationship between the markup, returns to scale in production, the 

elasticity of the cost and the profit share. I demonstrate that the profit share can serve as a robust 

non-parametric diagnostic for economic tests of the estimates of production (revenue) functions.  

2.1. ECONOMIC MODEL OF PRODUCER BEHAVIOR 

Consider a firm that minimizes cost in expectation or non-stochastically. I assume that the cost of 

inputs is separable in inputs and factor prices, i.e., cross-partial derivatives of the cost with 

respect to factor prices and inputs are equal to zero. Hence, the cost can be written as 

1
( , ) ( , )n

j j jj
C L w C L w

=
= ∑  where L and w are vectors of inputs and factor prices, Lj is the jth input 

and wj is its price. The elasticity of the cost Cj with respect to input j is 

( , )
( , )

j j j j
j

j j j j

C L w L
L C L w

φ
∂

= ⋅
∂

. The share of input j in total cost is ( , ) / ( , )j j j jC L w C L wω = .  

Returns to scale in production γ is defined as 
1
( ) / ( )n

j jj
Q L L Q Lγ

=
= ∂ ∂∑  where Q(L) is 

the production function. Analogously, returns to scale in the revenue function η is defined as 
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1
( ) / ( )n

j jj
Y L L Y Lη

=
= ∂ ∂∑  where Y is total revenue. I define markup μ as the ratio of the output 

price to the marginal cost. Profit share is defined as ( )s Y C Yπ = − . Note that I make no 

assumptions about production function, structure of product and factor markets. 

To simplify exposition, I also assume that firms can freely adjust factors of production to 

avoid unnecessary complications arising from dynamic optimization. This assumption implies 

that firms solve a static profit maximization problem in every period and inputs and output are 

chosen simultaneously. Alternatively, one can interpret this assumption as describing a large 

cross-section of firms or the long run when firms can adjust all inputs. In this general setup, the 

following result can be proven:  

 

Proposition 1. 

Suppose a firm minimizes cost, all inputs are variable, and its cost is separable in inputs. 
Then, (1 )sπγ μ φ= − , where μ is the markup, 

1

n
j jj

φ φ ω
=

= ∑  is the elasticity of the cost 

with respect to inputs, jφ  is the elasticity of the jth factor cost, ωj is the share of input j in 
total cost, γ is returns to scale in production, and sπ is the profit share in revenue. 
Furthermore, if the firm maximizes profit, then η γ μ= , where η is returns to scale in 
the revenue function.  
Proof: see appendix C. 
 

One can draw several conclusions from Proposition 1. First, consider the case where factor 

supplies are perfectly elastic (i.e., 1jφ =  for all j). Since the profit share sπ is close to zero 

(Rotemberg and Woodford 1995, Basu and Fernald 1997), by Proposition 1 the returns in the 

revenue function η, which is equal to γ μ , should be approximately unity. Furthermore, 

industries with large returns to scale in production γ should have a large markup μ such that 

μ γ≈ . Hence, finding constant returns to scale in revenue is very likely to indicate that there are 

increasing returns to scale in production since the markup is often greater than 1.05-1.1 (e.g., 

Bresnahan 1988) Proposition 1 shows that low returns to scale in the revenue function imply a 

large profit share. For instance, η=0.8 implies sπ=20%. Similarly, finding η>1 is not consistent 

with profit maximization since η>1 implies a negative profit share. More generally, if the profit 

share implied by an estimate of η is far from the profit share observed in the data, then one has a 

signal that either the statistical or economic model is incorrect. This point is first raised and 

proven in Basu and Fernald (1997). Because Proposition 1 makes weak assumptions about 
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producer behavior, the profit share serves as a robust non-parametric economic diagnostic for 

statistical estimates of η.  

Second, consider the case where factor supplies are not perfectly elastic (i.e., 1jφ ≠  for 

some j). In this case, there is no tight link between the profit share and returns to scale in the 

revenue function η. For example, increasing returns to scale in the revenue function η and a small 

positive profit share can be reconciled by a steep cost (i.e., large φ ). For example, monopsony 

power or shift premium can result in an upward-sloping labor supply schedule. Likewise, 

decreasing returns to scale in revenue or production functions can be consistent with a small 

profit share if φ  is less than unity, i.e., the marginal unit cost of inputs is (locally) declining. 

Table 1 summarizes the relationship between sπ, η and φ .  

Note that in the case with 1φ ≠  the cost-based Solow residual does not measure 

technology (or revenue generating ability) correctly because cost shares are not equal to the 

elasticities of output with respect to corresponding inputs. Specifically, the cost-based Solow 

residual then depends on factor ratios and, thus, it can be procyclical and serially correlated.  

 For the case with some inputs being fixed, the following Corollary to Proposition 1 can 

be proven:  

 

Corollary 1 

Suppose that the assumptions of Proposition 1 hold. Also suppose that first k inputs are 
variable and other n-k inputs are fixed. Then, * * * *(1 )sπγ μ φ ω= − , where *

1

k
j jj

φ φ ω
=

= ∑  

is the elasticity of the cost with respect to variable inputs, *ω  is the cost share of variable 
inputs in total cost, *γ  is returns to scale in production with respect to variable inputs, 
and *sπ  is the profit share in revenue. Furthermore, if the firm maximizes profit, then 
estimated returns to scale with respect to variable inputs is * *η γ μ= . 
Proof: see appendix C. 
 

Corollary 1 suggests that the argument about the profit share should be applied to 

variable inputs only. The corollary explains that the profit share can be temporarily large since 
*γ  can be significantly less than unity or temporarily small since the short term elasticity of the 

variable factor supplies can be low (i.e., *φ  large). Since there is no optimization with respect to 
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fixed inputs, cross-sectional variation in the fixed inputs is sufficient to identify the returns to 

scale with respect to fixed inputs and, hence, returns to scale with respect to all inputs.  

In summary, Proposition 1 justifies using the profit share as an economic check to verify 

that statistical estimates of production function parameters make economic sense. Put differently, 

since parameter φ  can be interpreted as returns to scale in the cost, returns to scale in the 

revenue function η is always less than returns to scale in the cost but the difference is small. 

Furthermore, since the profit share is small, a consistent estimate of returns to scale in the 

revenue function can inform the researcher about the properties of the cost, specifically about its 

parameter φ . Likewise, one can infer η from φ .  

2.2. FUNCTIONAL FORMS 

To make further progress in the analysis of estimated returns to scale, I assume functional forms 

for production and demand function and cost.2 Specifically, the inverse demand function is 

isoelastic 1/
it it itP G Q σ−= ⋅  where i and t index firms and time, Pit is the price of the good, Qit is the 

quantity of the good, Git is a demand shifter (e.g., quality of a good, macroeconomic conditions) 

and σ is the elasticity of demand. The markup is /( 1)μ σ σ= − . The production function is 

it it itQ A Zμ γ=  where Ait is Hicks-neutral firm-specific productivity (the power of Ait is a 

normalization to simplify notation), and Zit is a composite input. For the case with multiple 

inputs, I assume a Cobb-Douglas production function. Here and henceforth, I assume that inputs 

are measured in physical units. The cost of consuming Zit is it itW Z φ  where Wit is the base price of 

the input and φ  is the elasticity of the cost with respect to the input Zit. The case of 1φ =  

correspond to supply of Zit being perfectly elastic. Hence, the profit is it it it itY W Z φπ ≡ −  where 

it it itY P Q=  is the revenue function. The profit function is concave in the input if and only if 

0γ μ φ− < . 

Taking logs of the first order conditions, suppressing uninteresting constants, and 

partialing out industry-wide shocks, one obtains the following expressions for optimal input, 

revenue, and price 

                                                 
2 This model of producer behavior is similar to the model analyzed by Marschak and Andrews (1944) and Klette and 
Griliches (1996). 
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1 1 ( )it it it itz w a g
η φ η φ

= − +
− −

, (1) 

( )it it it ity w a gη φ
η φ η φ

= − +
− −

, (2) 

where small letters denote logs of the respective variables, and η=γ/μ is the returns to scale in the 

revenue function. Note that demand shocks Git and technology shocks Ait are isomorphic and, 

thus, are not identified separately.3 Henceforth, I treat Git as it were a shock to technology and 

consider only Ait. It will be convenient in further analysis to write (1)-(2) in matrix form:  
1 1

it it
it it

it it

z w
y a

η φ η φ
η φ

η φ η φ

−
− −

−
− −

⎡ ⎤⎡ ⎤ ⎡ ⎤
≡ = ≡ Λ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎣ ⎦

X F . (3) 

Equations (1) and (2) indicate that output and input demand are increasing in productivity ait and 

decreasing in the factor price wit. Note that one can consider (1)-(2) as a log-linear approximation 

of other function forms for production, cost and demand. Importantly, ait and wit are firm-specific 

price and productivity shocks because industry-wide shocks are partialled out. Since variation in 

technology ait across firms is not controversial (e.g., Bartelsman and Doms 2000), in the next 

section I focus on wit as a source of variation in (1)-(2).  

2.3. ON SOURCES OF VARIATION  

In the model (1)-(2), I use variation in the factor price wit to address two stylized facts. First, 

inputs and output are not collinear in the data. Second, there is enormous variation in input 

mixes. For example, the interquantile (Q3-Q1) range of log(capital/labor) and log(materials/labor) 

for Chilean and U.S. manufacturing firms is typically above 100% even at four-digit SIC 

industries. Note that in any model that assumes Hicks-neutral technology such variation in input 

mixes can happen only if firms face different input prices or technology or firms cannot satisfy 

profit maximizing (cost minimizing) conditions (e.g., because of managerial errors). Hence, 

variation in wit can explain both facts.  

I am agnostic about the reasons why firms face different input prices. My non-exhaustive 

list includes unionization, regulation, location, composition of capital, and subjective beliefs of 

the management about factor prices. Search and information costs result in equilibrium price 

                                                 
3 Under stronger assumptions it is possible to separate demand and technology shocks. For example, Katayama, Lu 
and Tybout (2003) assume Bertrand pricing and constant marginal cost to identify demand and technology shocks.  



 - 8 -

dispersion even if firms are identical ex ante (e.g., Stigler 1961, Salop and Stiglitz 1982, Burdett 

and Judd 1983, Stahl 1989).  

There is substantial direct evidence on the dispersion of prices even for precisely defined 

products (Stigler 1961, Pratt, Wise and Zeckhauser 1979, Dahlby and West 1986, Abbott 1992, 

Sorensen 2000). Using firm-level U.S. Census data, Abbott (1992) reports that the mean 

coefficient of variation for output prices at 7-digit product codes is at least 55% (see also Roberts 

and Supina 1996). Even prices of homogenous inputs such as cement have significant dispersion 

at local markets (Abbott 1992, Adams 1997, Lach 2002, Yoskowitz 2002). For 70% of firms, 

other firms are the main customers (Fabiani et al 2004) and, thus, such price dispersion is an 

important source of variation in input mixes.  

Likewise, there is voluminous evidence that similar workers are paid different wages 

(e.g., Mortensen 2003 and references cited therein). Abowd, Creecy and Kramarz (2002) find 

that approximately 40-50% of wage dispersion in France and the state of Washington is 

determined by firm effects. Price dispersion in capital/financial markets is less documented yet it 

exists (see Hortaçsu and Syverson (2004) for an example of dispersion of fees charged by mutual 

index funds). Multiplicity of interest rates also suggests that different firms face different prices 

of capital even within the same industry and location. Furthermore, firms may have different 

shadow prices of inputs (because of adjustment costs, for example) even when they face the 

same posted market prices for inputs.  

There are alternative explanations for variation in input mixes. In the early studies of 

production functions (e.g., Marschak and Andrews 1944, Hoch 1961, Zellner, Kmenta and Dreze 

1966), it is assumed that managerial errors determine the variation in input ratios.4 In another 

interpretation (e.g., Stigler 1976, McElroy 1987), managerial errors reflect constraints known to 

the management but unobserved to the econometrician.5  

                                                 
4 For example, Zellner, Kmenta and Dreze (1966, p. 785) assume that, “The random disturbance terms in the 
traditional model [of non-stochastic first order conditions] are introduced to allow for random, nonsystematic errors 
on the part of entrepreneurs in their attempts to adjust inputs to satisfy the necessary conditions for profit 
maximization.” 
5 Another explanation of variability in input mixes is variation in parameters of the production function. A typical 
approach to estimate models with parameter heterogeneity (e.g., Mairesse and Griliches 1990, Biorn, Lindquist and 
Skjerpen 2002) is to use the random coefficients estimator (Swamy 1970) that assumes zero covariance between 
random coefficients and regressors. This assumption is, however, clearly violated in the context of production 
functions if management knows the parameters of its production function. Consider the model in (1)-(2) with no 
measurement errors, 1μ =  and random firm-specific RTS parameter γi such that 2~ ( , )i iid γγ γ σ  and 
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Although the managerial errors theory may be right, it can hardly explain immense 

variation in input mixes. (Recall that the interquantile range of log input ratios is generally above 

100%.) In addition, all measures of dispersion for input ratios increase with aggregation. It is 

hard to reconcile these facts with managerial errors theory because there is no reason to expect 

that managerial errors become more important with aggregation. In contrast, variation in prices 

for labor, capital and materials gives an estimate of volatility in input mixes in the right ball 

park.6  

 Differences in interpretation, however, do not generally imply differences in estimates of 

RTS. For example, suppose that factor prices are the same across firms and consider a Cobb-

Douglass production function with labor Lit and capital Kit inputs and managerial errors ,K L
it itζ ζ  

in the first order conditions exp( )K
K it it t itY K Rβ ζ=  and exp( )L

L it it t itY L Wβ ζ= , where βK and βL 

are elasticities of the revenue function with respect to capital and labor, Yit is the revenue, Rt is 

the cost of capital and Wt is wages. After taking logs and ignoring uninteresting constants, one 

has K
it it ity k ζ= +  and L

it it ity l ζ= + . If one assumes firm-specific factor prices, the corresponding 

first order conditions are it it ity k r= +  and it it ity l w= + . Thus, the models are observationally 

equivalent and give identical estimates of parameters in the revenue function. As a result, I will 

treat factor prices as generic shocks to input ratios.  

2.4. WHAT “PRODUCTION FUNCTION” REGRESSIONS ESTIMATE? 

Firm-level data sets (e.g., Longitudinal Business Database at the U.S. Census Bureau) rarely 

contain information about prices paid/charged by firms or quantities consumed/produced by 

                                                                                                                                                             
cov( , ) cov( , ) 0it i it iw aγ γ= = . The estimated model is it i it ity z uγ= + . It is not hard to find 

2 2 2cov( , ) [ ( 1)( 2) /( 1) 0]
it i

x
γ

γ γ γ γ σ γ≈ − − − + − < . Because cov( , ) 0it ix γ ≠ , the estimator is not consistent and results 
should be interpreted very carefully. 
6 For example, Abowd, Creecy and Kramarz (2002) report that the standard deviation of log real hourly wages is 
53%. If one takes the coefficient of variation as a proxy for the standard deviation of log deviations from the mean, 
then the standard deviation of material prices is 55% (Abbott 1992) at the 7-digit level. At the 4-digit level, the 
standard deviation is likely to be several times larger. Hence, variation in the ratio of prices for labor and materials, 
which is equal to log(labor/materials), can be as large as 100%. Likewise, the standard deviation of log fees in 
mutual funds is about 50% (Hortaçsu and Syverson 2004), which, however, can be an upper bound. Hence, variation 
in log wage to capital price, which is equal to log labor to capital ratio, can also be as volatile as 100%. Of course, 
the observed variation can be endogenous, yet this calculation is suggestive. Note that this simple calculation 
ignores possible variation in shadow prices which can be considerably larger than the variation in posted prices 
because shadow prices can differ across firms due to adjustment costs, complementarity of inputs, composition of 
inputs (especially vintages of capital), etc.  
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firms. In vast majority of cases, the econometrician observes only inputs and revenue of the firm 

and, hence, a typical production function regression is  

it t it ity p bz u− = + ,  (4) 

where tp  is industry price index, b is estimated returns to scale, uit is the error term, and the 

dependent variable is the firm revenue deflated by industry price index.7 In the standard 

framework of monopolistic competition (Dixit and Stiglitz 1977), the demand function is 
1

it t it itp p q g constσ= − + +  and, the hence, 

  1( ) (1 )it t it it t it ity p p q p q g constσ− = + − = − + + =  
(1/ )( ) ( )it it it it it itz a g const z a g constμ γ μ η= + + + = + + + . (5) 

Clearly, the coefficient b in (4) reflects returns in the revenue function η, not returns to scale in 

production γ. Furthermore, because firms face different productivity and/or wage realizations, the 

price of the good varies across firms and, as I discussed in the previous section, dispersion of 

prices is not trivial even in narrowly defined industries. Therefore, deflating the firm’s revenue 

with an industry price index tp  does not generally yield the firm’s output. In the limiting case 

where the share of the firm in industry output converges to zero and shocks to productivity and 

factor prices are not perfectly correlated across firms (recall that industry-wide shocks are 

partialled out), the cross-sectional variation of ( )it ty p−  converges to the cross-sectional 

variation in yit, i.e., the dependent variable in typical firm-level production function regressions is 

effectively the firm’s revenue yit, not the firm’s output qit.8  

One has to be careful with the interpretation of the residual in (4) as well. Note that the 

error term in (5) combines demand shocks Git and technology shocks Ait and, hence, one should 

not attribute large residuals to high technology because a large residual can stem from a large 

demand shock. Likewise, large variation of uit in (4) should not be interpreted as large variation 

in technology. 

                                                 
7 Foster, Haltiwanger and Syverson (2005) is an important exception. They consider firms producing homogenous 
goods so that information on revenue and physical output is available.  
8 See Klette and Griliches (1996) for further discussion. Also note that time dummies are often included in (4) so 
that deflation by tp  is irrelevant. 
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2.5. RECAPITULATION 

This section makes several points. First, because of data limitations, typical production function 

regressions based on firm level data use revenue as the dependent variable and, hence, estimate 

returns to scale in the revenue function and do not yield the Solow residual measuring technical 

efficiency of firms. Second, profit share in the revenue sπ should be used as a robust 

nonparametric diagnostic for the estimates of RTS in the revenue function. Third, increasing or 

decreasing RTS in the revenue function and a small profit share sπ can be reconciled by φ , the 

elasticity of the cost with respect to inputs. Hence, the parameter φ  is of central importance. 

Fourth, there is sizable variation in factor prices across firms.  

Unfortunately, available estimators either do not yield an estimate of φ  or hinge critically 

on the assumption that 1φ =  (see Section 4). To address this problem, I develop a full-

information estimator that deals with production and cost sides simultaneously.  

3. COVARIANCE ESTIMATOR 

To consistently estimate parameters of production/revenue and cost functions, I suggest an 

estimator based on explicit specification and modeling of unobserved shocks (i.e., productivity, 

demand, wages, etc.) where factor price shocks are treated symmetrically with productivity 

shocks, instead of just focusing on productivity shocks. The idea of the estimator is to identify 

and estimate parameters of the model by matching covariance matrix implied by the model to the 

empirical covariance matrix of observed choices of firms. In contrast to single equation 

estimators (e.g., OLS), this structural estimator models outputs and inputs simultaneously 

(system approach) by deriving optimal output and factor demands from a profit maximization or 

cost minimization problem. This estimator falls under the rubric of structural equation modeling 

(see Bollen 1989 for a general discussion).9 In this section I explain the intuition behind the 

estimator and discuss identification and estimation.  

3.1. INTUITION 

To illustrate the workings and intuition of the estimator, consider model (1)-(2) and assume—for 

reasons discussed later—that 1φ =  and ait and wit have variances 2
aσ  and 2

wσ  with ( , ) 0it ita wρ = . 

                                                 
9 This approach is also called MIMIC, LISREL and other names.  
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These assumptions are restrictive and later I will show that the estimator works under less 

stringent conditions.  

Because ait and wit are not observed, one cannot run a regression of zit and/or yit on these 

shocks to estimate the returns to scale in the revenue function η . Note, however, that 
2 2 2var( ) ( 1) ( )it w az η σ σ−= − + , 2 2 2 2var( ) ( 1) ( )it w ay η η σ σ−= − + , and 2 2 2cov( , ) ( 1) ( )it it w ay z η ησ σ−= − +  

with unknowns 2 2, ,a wη σ σ . Since the second moments are observed, one can solve the system of 

equation for η: 

var( ) cov( , )
cov( , ) var( )

it it it

it it it

y y z
y z z

η −
=

−
.  (6) 

Thus, one can estimate η from the second moments of the data. This was the insight of the 

seminal paper by Marschak and Andrews (1944). I will call (6) and expressions analogous to (6) 

the covariance (COV) estimator. Why is the estimator working?  

Equations (1)-(2) describe the optimal profit-maximizing behavior of firms and 

optimization imposes restrictions on how firms respond to shocks. Specifically, the assumption 

of Hicks-neutral technology and perfectly elastic factor supply curve result in the restriction that 

revenue and input demand respond equally strongly to an innovation in technology. In other 

words, the coefficient on the structural shock ait is the same in equations (1) and (2). 

Furthermore, the assumption of the perfectly elastic factor supply curve implies the restriction 

that the response of revenue to a shock in the factor price wit is η time stronger than the response 

of the factor demand zit to the factor price shock. Put differently, the coefficient on wit in 

equation (2) is equal to the coefficient on wit in (1) multiplied by η. The economic restrictions of 

Hicks-neutral technology and perfect elasticity of the factor supply are complemented with the 

technical restriction ( , ) 0it ita wρ = . This latter condition ensures that one can separate technology 

shocks and factor price shocks. If technology and factor prices are correlated, this simple model 

is not identified.  

This estimator can have an instrumental variables interpretation. Equation (6) can be 

equivalently written as  

cov( , )
cov( , )

it it it

it it it

y y z
z y z

η −
=

−
 (7) 
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and, hence, yit-zit is an instrumental variable for zit. Because of the Hicks-neutral technology and 

perfectly elastic factor supply, profit maximization imposes that revenue yit and input zit respond 

equally strongly to productivity shocks ait and, hence, it it ity z w− ∝ . Given the assumption 

( , ) 0it ita wρ = , yit-zit is correlated with zit and uncorrelated with ait. In this simple case, 

covariance and instrumental variable estimators are equivalent. However, as I will discuss below, 

explicit instrumental variables like yit-zit are not always available and typically the instrument 

depends on an unknown parameter.  

3.2. MODEL FRAMEWORK  

The basic model (3) can be generalized along several dimensions. First, I specify the dynamics 

of unobserved technology and factor prices collected in the vector Fit. Second, measurement 

errors are salient in micro-level data sets. To address this important fact, I augment (3) with 

measurement errors. Third, I allow observed choices of firms to respond to observed exogenous 

variables. In summary, the general model is  

it it i it= Λ + +X F X ε , (8) 

, 1i t it it+ = Π +F F υ , (9)  

where Xit is the vector of n observed variables (inputs and revenue), Fit is the vector of m 

unobserved variables (factor prices, productivity), the matrix Λ summarizes the responses of 

observed variable to Fit, iX  is a vector of unobserved permanent firm-specific effects for Xit, εit 

is a vector of i.i.d. zero-mean measurement or expectations errors, υit is a vector of i.i.d. 

structural zero-mean innovations to Fit, and the matrix Π captures the dynamics of Fit.10 The 

matrix Λ for the n-input case is given in (A.1), Appendix A. I collect parameters of the model in 

the vector θ and assume here and henceforth that the mapping from θ to 

, , ( ), ( )it it it itE E′ ′Π Λ Ω ≡ Ψ ≡υ υ ε ε  is one-to-one in the admissible domain of θ. 

This state space representation of the problem nests many important cases such as 

dynamic factor models (m<n), log-linearized rational expectations models in state-space form 

and serially correlated measurement errors.11 I am agnostic about time series properties of Fit and 

                                                 
10 Since dependence of Xit on observed exogenous variables (e.g., time dummies) can be easily eliminated by 
projection methods, I abstract from such dependence without loss of generality. 
11 This case is important in practice because econometricians rarely have reliable estimates of capital stock, effort, 
etc. For example, there are two popular estimates of capital: 1) real capital stock computed by inventory methods; 2) 
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contemporaneous correlation of innovations in υit as economic theory may have few restrictions 

on how variables in Fit evolve over time or how υit is correlated. Note that variables in Fit can 

correlated because either Π or Ω is not diagonal. Likewise, I do not impose any structure on iX .  

The model (8)-(9) has much in common with dynamic factor models. However, in 

contrast to dynamic factor models, the factor loadings embodied in the matrix Λ can be identified 

under certain conditions and, thus, factors can have structural interpretation. In the next section, I 

present the conditions under which θ is identified.  

3.3. IDENTIFICATION  

The key question for the COV estimator is the identification of parameters because many models 

can be consistent with observed covariances. Local identification of these parameters in the static 

model (8) and dynamic model (8)-(9) is discussed elsewhere (e.g., Hoch 1958, Maravall and 

Aigner 1977, Maravall 1979, Bollen 1989, Bekker, Merkens and Wansbeek 1994). In effect, 

local identification requires showing that the Jacobian of the objective function has full rank.  

Obviously, the necessary condition for identification is that the number of parameters in θ is not 

greater than the number of unique moments in considered covariance and autocovariance 

matrices. 

Global identification is more subtle. In factor analysis terminology, global identification 

reduces to proving that there is no rotation matrix T producing { , , , }Λ Π Ω Ψ =  
1 1 1{ , , , }T T T T T− − −′Λ Π Ψ Ω  observationally equivalent to { , , , }Λ Π Ω Ψ . Fortunately, profit 

maximization imposes many restrictions on the matrix Λ and, hence, global identification can be 

ensured under relatively mild assumptions.  

Global identification is more subtle. In factor analysis terminology, global identification 

reduces to proving that there is no rotation matrix T producing { , , , }Λ Π Ω Ψ =  

                                                                                                                                                             
book value of fixed assets. In either case, measurement error is likely to be serially correlated. Suppose that the 
econometrician uses a noisy measure of investment such that et, the error in true investment *

tI , is classical (the 
measurement error can arise from using investment price index to deflate firm-level investment expenditures). The 
true capital stock evolves according to * * *

1(1 )t t tK K Iδ
−

= − + . Then the estimated capital stock is 
* *

1 0
(1 ) (1 ) s

t t t t t s ts

k
tK K I K e Kδ δ ε

∞

− −=
+= − + = − = +∑  with 1(1 ) t

k k
t t eε δ ε −= − + , that is, measurement error 

~ (1)k
t ARε . Importantly, serially correlated measurement errors invalidate instrumental variables based on 

leads/lags of inputs/outputs or input mixes. Similarly, true labor input may be measured with serially correlated error 
because of labor hoarding.  
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1 1 1{ , , , }T T T T T− − −′Λ Π Ψ Ω  observationally equivalent to { , , , }Λ Π Ω Ψ  (see Theorem 5 in Tse and 

Anton 1972). Profit maximization imposes many restrictions on the matrix Λ and, thus, on 

admissible rotation matrices T yet these restrictions do not eliminate rotational equivalence in (8)

-(9). Further restrictions on Ω and Π can guarantee identification. The following proposition 

proves global identification for two important special cases. 

Proposition 2 
Assume that  
i) the matrix Π is invertible,  
ii) the eigenvalues of Π are in the unit circle,  
iii) the system in (8)-(9) is observable and controllable,  
iv)  ( ) ( ) 0it itE E= =ε υ  and ( ) ( ) ( ) ( ) ( ) 0it jt it is it jp it is it jtE E E E E′ ′ ′ ′ ′= = = = =υ υ υ υ ε υ ε ε ε ε  

for any t,i,p,j and s t≠ , 
v) firms maximize profits so that the matrix of loadings Λ is as in (A.1),  
vi) at least one of the factors is supplied in a competitive market.  
Then the model (8)-(9) is uniquely globally identified if  
a) innovations in υit are contemporaneously uncorrelated (that is, the covariance matrix 

Ω is diagonal), or 
b) the matrix Π is diagonal (that is, there are no dynamic cross-variable responses) 
Proof: see Appendix C. 

The assumption that one of the factors is supplied in a perfectly competitive market fixes 

the elasticity of the factor supply curve for other inputs which, in turn, fixes the parameters of the 

revenue function. Note that factor price and productivity can be correlated in both a) ob b). 

Identification is achieved by imposing restrictions on the correlation of innovations in factor 

prices and technology (Ω is diagonal) or by imposing restrictions on the propagation of the 

shocks to technology and factor prices (Π is diagonal). It is also possible to identify θ if 

combinations of restrictions on Π or Ω are available.12  

Local identification of models with serially correlated measurement error is discussed in, 

e.g., Maravall (1979) and Maravall and Aigner (1977). In the next proposition, I present 

conditions under which the model is globally identified. 

Proposition 3 
Suppose that i) serially correlated measurement errors in observed inputs and outputs 
are not correlated across inputs and outputs at all leads and lags; ii) measurement errors 
are not correlated with factor prices and productivity and the number of serially 

                                                 
12 Glover and Willems (1974) show that one needs to modify the conditions slightly if observed and latent variables 
can respond contemporaneously for the same set of shocks. 
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correlated measurement errors k cannot exceed the number of observed variables n; iii) 
serially correlated measurement errors are AR(1) and covariance stationary. Then Λ, Π, 
and Ω identified almost everywhere if Λ, Π, and Ω are identified in the absence of 
measurement errors.  
Proof: see Appendix C. 

 
Note that in Propositions 2 and 3 I use only time series variation in factor prices and 

technology to identify parameters of the model. In other words, I do not use variation in iX . 

However, it is possible to use restrictions on the distribution of iX  to achieve identification in 

otherwise underidentified model. For example, one may be willing to impose i i= ΛX F  with 

( )iVar F  being diagonal. Such restrictions can be particularly important if between variation is 

large relative to the within variation.13  

3.4. ESTIMATION AND INFERENCE 

Without loss of generality I assume that the panel of the firms is balanced with t=0,…,T 

observations for each cross-section. The number of i.i.d. cross-sections is N. I collect the 

parameters of interest in the vector θ, which is locally identified. I assume that Xit is stationary. 

The estimation strategy is to find θ minimizing the distance between the appropriate sample 

covariance matrix and the covariance structure implied by θ. There are many possible ways to 

construct a metric of discrepancy between the sample and implied covariance matrices. I focus 

on maximum-likelihood methods since they tend to have somewhat better performance in finite 

samples because MLE does not use a weighting matrix that depends on unknown parameters 

(e.g., Clark 1996). I assume that the parameters are local identified.  

It is convenient for further derivations to stack observed choices for each firm in vector 

0 1[ ... ]i i i iT
′′ ′ ′=X X X X  where it i is is= + Λ +X X F ε  and , 1it i t it−= Π +F F υ . Suppose that 

0 1[ ... ] ~ (0, )i i i Ti TN Iυ υ υ ′′ ′ ′= Ω⊗υ  and 0 1 1[ ... ] ~ (0, )i i i T TN Iε ε ε ′′ ′ ′= Ψ⊗ε  (i.e., 

measurement error εit and structural shocks υit are normally distributed and serially uncorrelated) 

                                                 
13 In applications, it may happen that η, returns to scale in the revenue function, is identified while other parameters 
in θ are not. In such cases, one can impose fairly arbitrary restrictions on unidentified parameters to have a well-
defined estimation problem without affecting the identification of η (see Bollen 1989 for a discussion). If η is 
identified locally but not globally, it may be possible to rule out implausible cases, e.g., η<0. If η is not locally 
identified, one can follow Marschak and Andrews (1944) and put economic bounds on possible values of η. This 
amounts to constructing the set of values that parameters can take for all admissible rotations. 
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and ( ) 0i iE ′ =υ ε  (i.e., structural shocks and measurement errors are not correlated at all leads and 

lags). Provided 0i =X , one can find that ~ (0, )i TN ΦX  where  

0 0

1 0

1 0 0 0 0

( )T i i

T
T

E

′Σ ΛΓ Λ + Ψ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥′Σ ΛΓ ΠΛ⎢ ⎥ ⎢ ⎥′Φ ≡ = =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥′ ′ ′Σ Σ Σ ΛΓ Π Λ ΛΓ ΠΛ ΛΓ Λ + Ψ⎣ ⎦ ⎣ ⎦

X X , (10) 

with ,( )s it i t sE −′Σ = X X , ,( )s it i t sE −′Γ = F F , 0 0 0: ′Γ Γ = ΠΓ Π +Ω . To simplify the notation, I use Φ 

instead of Φ(θ), which explicitly indicates that Φ is a function of parameters collected in the 

vector θ. Hence, the likelihood function is given by  
1

1
ˆ ˆ( , ) ln | | { } ln | |N

i T T T Ti
l trace Tnθ −

=
= Φ + Φ Φ − Φ −∑ X  (11) 

where 1
1

ˆ N
T i iN i=

′Φ = ∑ X X , n is the number of observed choices of firms and maximum likelihood 

estimate of θ maximizes (11). Since rational expectations models can be represented in the state-

space form like (8)-(9), it is an easy step to  extend (11) to estimation of rational expectations 

models (see appendix A).14  

For the case where steady state levels of inputs and output are treated as random, suppose 

that ~ (0, )i N ΞX  and ( ) 0i iE ′ =X u  and observe that ( ) ( )T i i T T TE J J′ ′Φ = = Ξ⊗ +ΦX X , where 

JT is the ( 1) 1T + ×  vector of ones. It is straightforward to find that the associated likelihood 

satisfies 1
1

ˆ( , ) ln | | { }N
i T T Ti

l traceθ −
=

∝ − Φ − Φ Φ∑ X . If iX  is treated as a fixed parameter, one can 

transform the data to eliminate the incidental parameters iX , e.g., apply first differencing as in 

Hsiao, Pesaran, and Tahmiscioglu (2002). The log-likelihood for first-differenced Xi satisfies: 
1

1
ˆ( , ) ln | | {( )( ) }N

i T T Ti
l D D D trace D D D Dθ −

=
′ ′ ′∝ − Φ − Φ Φ∑ X  where D is the ( 1)nT n T× +  first-

difference matrix. Alternatively, one can use conditional likelihood approach, which under 

certain conditions is equivalent to applying a transformation (e.g., Arellano 2003). 

                                                 
14 A popular alternative is generalized method of moments (GMM) with the objective function 

1ˆ ˆ[ ( ) [ ( )] ]T T T TJ N Wθ θ−∗ ∗ ∗ ∗= Φ − Φ Φ − Φ′  where 0 1[ ( ) ( ) ( ) ]qT vech vec vec∗′ ′ ′ ′Φ ≡ Σ Σ Σ… , ˆ
T
∗Φ  is a sample 

estimate of T
∗Φ , W is a weighting matrix of conformable size. GMM and ML are asymptotically equivalent 

(Anderson and Amemiya 1988). If factor prices and productivity are uncorrelated, GMM and MLE are equivalent to 
IV estimator with (if necessary, leads or lags of) input ratios as instruments (Schmidt 1988).  
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Since Xi is not necessarily normally distributed, one may want to use the standard quasi-

maximum likelihood tools to constructs standard errors for the estimates, i.e.,  
1 1 1ˆ( )Var N H GHθ − − −=  where 1 2

1

N

i
H N lθ

−
=

= ∇∑  and 1
1

N

i
G N l lθ θ

−
=

′= ∇ ⋅∇∑ . In the course of 

specification searches, one can use overidentifying restrictions tests since dynamic models such 

as (8)-(9) are typically overidentified. Importantly, it has been shown that specification tests 

based on likelihood ratios are sensitive to non-normality (see Bollen 1989 for discussion). 

Hence, one should evaluate the distribution of the test statistic using bootstrap procedures or rely 

on the statistic that is robust to non-normality.15 

3.5. DISCUSSION 

The structural approach embodied in the suggested estimator is built on earlier works on 

Marschak and Andrews (1944) and Schmidt (1988). I extend their static full-information 

maximum likelihood (FIML) estimators to dynamic settings and improve upon their FIML in 

several respect. First, I allow factor prices to be correlated with technology. This correlation can 

arise because of profit sharing, complementarity of worker skills and technology, monopsony 

power, overtime premia, etc. In contrast, the static models considered in previous studies are not 

identified if ait and factor prices are correlated. Second, my extension permits classical and 

serially correlated measurement errors while static FIML is not identified if there is any 

measurement error. Third, I show that static and dynamic models can be identified and estimated 

when factor markets are imperfectly competitive, i.e., factor supply curves are not perfectly 

elastic. Specifically, I show that having an input with a perfectly elastic factor supply is 

sufficient for identification.  Furthermore, I show in Appendix A that the covariance estimator 

can be extended to cases where the profit-maximizing firm faces adjustment costs. 

There is a cost of using the covariance estimator. Like any other FIML estimator, the 

COV estimator is more sensitive to misspecification than single-equation methods (e.g., OLS). 

Since the COV estimator works with higher moments, it may be more sensitive to outliers.  

 

                                                 
15 Monte-Carlo experiments (not reported here) suggest that finite sample performance of the COV estimator can be 
improved if a relatively small number of moments (sufficient for identification) are used in estimation. This 
enhancement is possible because low-order autocovariances can be estimated more precisely than in the presented 
formulation. For example, the first-order autocovaraince can be estimated using NT observations while in the 
presented formulation only N observations are used for the estimation. This issue is similar to choosing optimal 
number of moments in GMM application and it is left for future research.  
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4. ALTERNATIVE ESTIMATORS OF THE PRODUCTION FUNCTION 

In this section I analyze alternative estimators of production function. I start with OLS to 

highlight the problems of estimating production functions and then proceed with the analysis of 

popular solutions to these problems. To contrast estimators, I use the dynamic model (8)-(9) with 

observed input z and output (revenue) y, measurement errors ,z y
it itε ε , and unobserved factor price 

w and technology a:  
1 1 z

it it it itz w aη φ η φ ε− −= − +  (12) 
y

it it it ity w aη φ
η φ η φ ε− −= − +  (13) 

, 1
w

i t w it itw wρ υ+ = +  (14) 

, 1
a

i t a it ita aρ υ+ = +  (15) 

To simplify the presentation, I abstract from firm-specific effects. The estimated production 

function is  
y

it it it it ity z a z errorη ε η= + + = +  (16) 

This model makes exposition clear, yet my conclusions apply to more realistic cases as well.  

4.1. OLS 

Consider the producer as in model (12)-(15) and assume that variables are measured without 

error and ait and wit are uncorrelated i.i.d. zero-mean shocks with variances 2
aσ  and 2

wσ .16 Using 

structural equations in (12)-(15), I find the probability limit of ˆOLSη  in (16):  

2 2 2 2

2 2 2 2

cov( , )ˆlim ( )
var( ) 1

it it a w a w
OLS

it a w a w

y zp
z

φσ ησ σ ση η φ η η
σ σ σ σ

+
= = = + − >

+ +
 

The upward bias in the OLS estimates is “the transmission bias” identified by Marschak and 

Andrews (1944). The asymptotic bias is decreasing in the variance of factor prices and, if the 

only source of variation is productivity, the OLS estimate is φ , the elasticity of the cost, 

irrespective of the true η, the elasticity of the revenue function.  

                                                 
16 If firm-specific productivity is time invariant, then one can use panel data techniques to control productivity with 
firm-specific fixed effects (FE). This happy situation is not universally applicable and FE is not consistent if 
productivity is time varying. Furthermore, as Griliches and Mairesse (1995) observe, FE aggravates other problems 
(e.g., attenuation bias of measurement errors) precisely because of assuming time invariant differences in 
productivity across firms. 
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How big is the bias? If wage and productivity shocks are uncorrelated, then 
2

2 2

( ) ( )a

a w

bias sπ
φ η σ φ η φ
σ σ
−

= < − =
+

 because sπφ η φ− =  by Proposition 1. Since the profit share is 

3% or less (e.g., Basu and Fernald, 1997) and φ  is likely to be no greater than 1.5, the bias is 

positive but likely to be smaller than 0.045. Intuitively, the OLS estimate is between η and φ . 

Because these two quantities are close to each other, there is only a narrow range in which the 

OLS estimate can fall.17 The same conclusion is likely to hold for cases with multiple inputs.18 A 

relatively small bias in returns to scale, however, does not imply a small bias in the OLS estimate 

of the coefficient for a given input. Put differently, an upward bias in one of the coefficients is 

offset with a downward bias in other coefficients. Even if wage and productivity shocks are 

correlated, the asymptotic bias is likely to be small. This result, however, can be distorted by 

measurement errors. 

4.2. IV/GMM ESTIMATORS 

The transmission bias can be eliminated if the researcher has an instrumental variable (IV) 

explaining variation in zit unrelated to productivity shocks ait. In the simple setup of uncorrelated 

wit and ait, the best instrument is wit, the price of zit. The problem is that factor prices wit are 

almost never collected and therefore such an IV is infeasible in the vast majority of cases. To 

rectify this problem, Schmidt (1988) suggests using input/output ratios as instruments, e.g., yit-zit 

in (7). If the production function is Cobb-Douglas, then Schmidt’s IV (SIV) is identical to the IV 

estimator with factor prices as instruments. However, this SIV is not consistent if factor prices 

and productivity are correlated, the factor supply is not perfectly elastic (i.e., 1φ ≠ ), or if either 

                                                 
17 If wage and productivity shocks are correlated, the asymptotic bias is 2 2 2( )( ) /( 2 )a a w a w a wφ η σ ρσ σ σ σ ρσ σ− − + −  

where ( , )it ita wρ ρ= . The OLS estimate of η can exceed φ  if and only if /w aρ σ σ− >  or fall below η if and only 

if /a wρ σ σ> . The first case requires a negative correlation between productivity and factor price, which is 
somewhat implausible. The second case is more plausible but it still requires that productivity be less volatile than 
base wage. Bartelsman and Doms (2000) report that the ratio of the ninth decile of the distribution of ait across firms 
to the first decile is typically about two to three. Juhn, Murphy and Pierce (1993) report that the log wage 
differential between the 90th and 10th percentiles in the private sector is about 1.5 and the differential is about 1.1 
after controlling for observed labor force characteristics. Hence, /a wσ σ  is likely to be large. If the correlation 

between ait and wit is in the range ( / , / )w a a wσ σ σ σ− , the bound presented above is still appropriate, i.e., the bias is 
likely to be less than 0.045. 
18 The expression for the bias becomes complicated with multiple inputs and the upper bound for the bias depends 
on the elasticities of cost for specific inputs and relative variability of factor prices.  
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the output (revenue) or inputs are measured with a serially correlated error. Unfortunately, all of 

these cases are empirically important.  

Alternatively, Blundell and Bond (1998, 1999, henceforth BB) suggest using 1) 

transformations of the variables to eliminate ait from (16) and 2) lags of inputs and outputs as 

instruments. Specifically, BB suggest two types of moment conditions: levels and differences. 

Define , 1 , 1it it i t it i ty y z zϑ ρ η ρη− −≡ − − + , the residual from the quasi-differenced production 

function (16). The differences moment condition is ( ) 0it itE gϑΔ =  where git is any combination 

of , ,, , 3i t j i t jy z j− − ≥ . The levels moment condition is ( ) 0it itE gϑ =  where git is any combination of 

, ,, , 2i t j i t jy z j− −Δ Δ ≥ . Two options for estimation are available. First, estimate the unrestricted 

model (i.e., let 1 , 1 2 3 , 1it it i t it i ty b y b z b zϑ − −≡ − − −  with b1, b2, b3 being free parameters) and take the 

coefficient on zit as η̂ . Second, estimate the restricted model.  

The following result can be proven for the restricted specification:  

Proposition 4 
Consider profit-maximizing firms as in (8)-(9) and estimate the production function using 
the restricted specification of the BB estimator. Then the model is not globally identified. 
In particular, the model has multiple locally-identified solutions, provided that the matrix 
П has distinct eigenvalues. The number of solutions is no greater than n+1 where n is the 
number of inputs. If the matrix П has repeated eigenvalues, then the model is not 
identified.  
Proof: see appendix C. 

To get the intuition behind this result, consider, without loss of generality, the “levels” 

moments , 1 , 1{( ) } 0it i t it i t tE y y z z zρ η ρη− −− − + =  where zit is a subset of 

, 2 , 3 , 2 , 3, ,..., , ,...i t i t i t i ty y z z− − − −Δ Δ Δ Δ . Use (12)-(13) to eliminate yit and zit from the moment condition 

and observe that two sets of parameter values satisfy the moment condition:  

Solution #1: ˆ ˆ,aρ ρ η η= =  which yields , 1 , 1ˆ ˆ ˆ ˆ( ) a
it i t it i t ity y z zρ η ρη υ− −− − + = , 

Solution #2: ˆ ˆ, 1wρ ρ η= =  which yields , 1 , 1ˆ ˆ ˆ ˆ( ) w
it i t it i t ity y z zρ η ρη υ− −− − + = . 

In this simple case technology is Hicks-neutral and factor supply is perfectly elastic. Under these 

assumptions, profit maximization imposes that it it ity z w− ∝  and it it ity z aη− ∝ . After 

appropriate quasi-differencing, each of these expressions is proportional to a serially 
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uncorrelated shock. Thus, the objective function of the estimator in this simple case has two local 

minima. 

In principle, the standard prescription is to choose a solution that gives the global 

minimum of some objective function (e.g., residual sum of squares), yet this heuristic may 

choose the incorrect solution #2. It may be hard to rule out some of the solutions on economic 

grounds. For example, in the presented one-input/one-output case, both solutions can be 

appealing. Furthermore, since the empirically observed profit share is small, η is likely to be 

close to unity (given perfect competition in factor markets) and, hence, estimator may be poorly 

identified even locally.  

The consequences of having multiple solutions become particularly acute in the 

unrestricted specification since it is possible to take linear combinations of solutions such as 

above so that the model is not identified locally. The following proposition shows this formally.  

Proposition 5 
Consider profit-maximizing firms as in (8)-(9) or in a modification of (8)-(9) that allows 
for a cotemporaneous response of observed variables to innovations in Fit. Then in the 
unrestricted specification, the Jacobian of moment conditions (either in levels or 
differences or both) based on lags of inputs or revenue or their differences does not have 
full rank.  
Proof: see appendix C. 

This proposition demonstrates that the rank of Jacobian for the moment conditions is smaller 

than the number of parameters to be estimated in the unrestricted specification and, hence, the 

model is not identified. Note that the problem is not in the weak correlation of lags of variables 

with their current values (which is the point addressed by using level moment conditions). The 

reduced rank problem arises because profit maximization imposes restrictions on how inputs and 

outputs comove over time so that some moments are collinear. Of course, the probability of 

finding a reduced rank is small because various misspecifications can ensure the full rank. Yet 

the estimator is likely to have a flat density. Furthermore, I show in Appendix B that, to a first 

order approximation, BB can be poorly identified even when it is costly to adjust inputs. It is 

critical to use restricted specification to attenuate the problem of weak identification. Mavroeidis 

(2004) notes a similar problem with using lags as instruments in estimation of rational-

expectations macroeconomic models.  
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Overall, the BB estimator in the production-function context can suffer from weak 

identification of parameters beyond what has been known before.19 Note that Propositions 4 and 

5 do not show poor identification of system GMM rather they show that poor identification can 

be a serious problem when the estimator is applied to estimating production functions of 

optimizing firms.  

4.3. INVERSION ESTIMATORS 

In this section I consider inversion estimators that use demands for inputs, investment or other 

observable choices of firms to construct a proxy for firm’s productivity and condition inputs in 

the production function on the proxy. A typical regression in this control-function approach is  

it it it it it ity z a z a errorη λ ϑ η λ= + + = + + ,  (17) 

where a  is the proxy for the productivity of a firm. The critical assumption of these estimators is 

that the mapping (inversion function) from observed characteristics to productivity or its proxy is 

non-stochastic. I focus on the Levinsohn-Petrin (2003, henceforth LP) estimator but my 

conclusions are also relevant to similar estimators (e.g., Olley and Pakes 1996, Pavcnik 2002).  

Following LP, consider the Cobb-Douglas revenue function with capital, labor and 

material inputs, that is, exp( ) K L M
it it it it itY a K L Mβ β β=  where the productivity shock ait is an AR(1) 

process: , 1
a

it a i t ita aρ υ−= +  and 2~ (0, )a
it aiid υυ σ . In the notation of LP, it itaω =  and a

it itξ υ=  and, 

for convenience, define , 1 , 1( | )it it i t a i tE aτ ω ω ρ− −= = . Capital is chosen in the beginning of period t 

when ξit is not observed but τit and factor prices are observed. Labor and materials are chosen 

when ξit is known, that is, variable inputs can be adjusted when more information is available.20 I 

denote (log) factor prices for capital, labor and materials with rit, wit, and M
itp . Factors are 

supplied in perfectly competitive markets. There is no measurement error. The rest of the 

problem is unchanged and the estimated production (revenue) function is  

                                                 
19 The BB estimator can be identified from nonlinearities in decisions rules captured by second-order effects. In 
addition, one may expect a better performance of the BB estimator if shocks to factor prices have higher orders of 
correlation than shocks to productivity. For example, factor prices with AR(2) structure are sufficient to guarantee 
identification of the BB estimator if productivity is AR(1). However, if the roots (other than the largest root) of the 
lag polynomial for factor prices are small, the BB moments can be almost collinear in finite samples and the 
estimator can behave erratically. Furthermore, there is no a priori reason to believe that wage shocks have a higher 
order of autocorrelation than productivity shocks. Likewise, identification from second-order effects can be fragile. 
BB can be identified if it is costly to adjust all inputs.  
20 Note that, in contrast to inversion estimators, the covariance estimator does not depend on timing assumptions.  
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it K it L it M it ity k l mβ β β ω= + + + , (18) 

where K L Mη β β β= + +  is returns to scale in the revenue function.  

 The idea of the LP estimator is to invert demands for capital and materials to infer 

productivity shocks ωit and then use the estimated productivity shock as a regressor in the 

production function—that is, condition (18) on ωit. The problem, however, is in the poor quality 

of the estimates of the productivity shocks. 

Note from profit maximization that the observed variables kit, lit, mit and yit can be 

expressed in terms of unobserved variables rit, wit, M
itp , τit, and ξit:  

( 1) (1 ) M
it K it L it M it itk r w pη β η β β τ− = + − + + − , (19) 

1( 1) (1 ) ( 1)( 1 )M
it K it L it M it it K itl r w pη β β η β τ η η β ξ−− = + + − + − − − − − , (20) 

1( 1) (1 ) ( 1)( 1 )M
it K it M it M it it K itm r w pη β β β η τ η η β ξ−− = + + + − − − − − − , (21) 

1( 1) ( 1)( 1 )M
it K it L it M it it K ity r w pη β β β τ η η β ξ−− = + + − − − − − . (22) 

It is straightforward to invert factor demands to firm’s productivity it it itω τ ξ= + : 

(1 ) (1 ) M
it it K it L it M itk r w pτ η β η β β= − + + − + + , (23) 

(1 )( )M
it K it it it itk m r pξ β η= − + − − + − . (24) 

There is a one-to-one non-stochastic mapping between factor demands and productivity 

shocks if and only if factor prices are the same across firms. But if factor prices are the same 

across firms then labor and materials are collinear. To see this point, suppose that factor prices 

are the same across firms in any given period t. Because inversion of factor demands is indexed 

by time, one can conveniently set rit=rt=0, wit=wt=0, and 0M M
it tp p= = . Clearly, this leads to 

1 1
1 1 Kit it it itm l η η βτ ξ− −
− − −= = +  and, thus, mit and lit are collinear. Even if the responses of lit and mit to 

τit and ξit are different (e.g., factor supply curves for labor and materials have different slopes), 

there is no unexplained variation in lit after it is conditioned on mit and kit: 

( | , ) ( | , ) 0it it it it it it it it it itl E l k m l E l l lτ ξ− = − = − = . Put differently, once (18) is conditioned on ωit 

there is no variation in labor/materials ratio and coefficients ,L Mβ β  are not identified. On the 

other hand, if factor prices are not the same across firms, then the assumption of non-stochastic 

inversion function is violated. Therefore, inversion of factor demands and conditioning (18) on 

estimated productivity shocks are internally inconsistent. In applications, identification of LP 
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must come from misspecification of the model. This point is raised by Basu (1999) and further 

discussed in Ackerberg and Caves (2003) and Bond and Soderbom (2005).  

What happens if volatility in factor prices is ignored? After all, LP indeed moves the 

estimates in the direction predicted by the theory, e.g., OLS LP
L Lβ β>  and OLS LP

K Kβ β< . To 

understand why LP can improve upon OLS, observe that the control function that combines kit, 

mit and ωit in (18) is  

( , ) (1 )( )M
it it K it M it it M K it it L itk m k m m p wζ β β ω β β η β= + + = + + − + + , (25) 

which is correlated with prices wit and M
itp . What are the consequences? Consider a simple case 

of one input with perfectly elastic supply and it it ita a wχ= +  as a control function in (17) where 

( ), 0it ita wρ ≠  if 0χ ≠ . Using projection methods, one can find  

  2

cov( , ) var( ) cov( , )cov( , )ˆlim (1 )
var( ) var( ) cov( , ) 1

it it it it it it it
OLS

it it it it

y z a y a z ap
a z z a

χη η η
χ

−′ = = + −
− +

. 

Clearly, the estimated coefficient is inconsistent unless 0χ = . From (25), it is likely that χ is 

positive and ˆOLSη′  is biased upward. The performance of LP depends critically on the parameter 

χ. Specifically, as χ increases, LP converges to OLS.21 However, for small χ, LP is likely to have 

large standard errors since variation of zit condition on ait is small. (To reiterate, if χ =0, LP is not 

identified.) Using nonparametric techniques or polynomials does not resolve the misspecification 

in (25) and the subsequent identification problem in (18) because identification of LP does not 

depend on the functional forms.  

Measurement errors present another problem in the inversion estimators because the 

assumption of non-stochastic inversion of observable choices does not hold and upward biases 

are likely to arise. More generally, conditioning on a proxy variable contaminated with 

measurement error leads to inconsistent estimates. To get intuition, consider a simple case of one 

input and it it ita a ζ= +  as a control function in (17), where 2~ (0, )it iid ζζ σ  is a classical 

measurement error. It follows that 

 
2 2

2 2 2 2 2 2

cov( , ) var( ) cov( , ) cov( , )ˆlim (1 )
var( ) var( ) cov( , ) ( )

ait it it it it it it
OLS

it it it it a w a w

y z a y a z ap
a z z a

ζ

ζ

σ σ
η η η

σ σ σ σ σ
−′′ = = + −

− + +
. 

                                                 
21 If χ is very large, the OLS bias 2 2 2 2(1 )( / ) /(1 / )a a a aη σ σ σ σ− +  can be smaller than the LP bias (1 ) /(1 )η χ χ− + .  
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Clearly, this estimate is not consistent unless 2 0ζσ = . Intuitively, because zit is correlated with ait, 

the attenuation bias in the estimate λ translates into upward bias in the estimate of η. Note that 

the bias in ˆOLSη′′  is strictly increasing in 2
ζσ  and, as informativeness of ita  falls (i.e., 2

ζσ → ∞ ), 

the probability limit of ˆOLSη′′  converges to the probability limit of ˆOLSη . Thus, measurement error 

in the productivity proxy leads to inconsistent estimates of η although the bias is smaller than in 

the case of OLS estimates. 

Overall, LP estimates of returns to scale are likely to be biased upward, although the bias 

is smaller than in OLS. The same problems can arise in other inversion-based estimators (e.g., 

Olley-Pakes 1996, Pavcnik 2002) because the dispersion of factor prices across firms does not 

allow non-stochastic inversion of firm’s observed choices into firm’s unobserved productivity. 

Inversion estimators can be a tenuous solution to the transmission bias problem because they 

ignore the variation in input mixes and/or measurement errors in inputs.  

5. MONTE CARLO EXPERIMENTS 

To verify my conclusions and evaluate the performance of the COV estimator, I run a series of 

Monte Carlo experiments. In each of these experiments, I draw factor prices, productivity and 

other shocks from the normal distribution and for given realizations of the shocks I compute 

profit maximizing choices of revenue and inputs. Starting values of shocks are drawn from the 

corresponding unconditional distributions. For each replication, I generate a panel of 1,000 firms 

observed for 10 periods, which is close to typical sizes in applied work. I feed the generated data 

into various estimators and compute the estimates of the parameters for a given production 

function. I repeat the procedure 1,000 times and report median bias, standard deviation and root 

mean squared error (MSE) for each of the considered estimators.  

In all experiments, returns to scale is 1.1γ = , which is consistent with the estimates of 

RTS from reports compiled by engineers (e.g., Pratten 1988), and the markup is 2μ = . I choose 

a large markup to contrast the performance of the estimators. Returns to scale in the revenue 

function is 0.55η γ μ= = . Factors are supplied in perfectly competitive markets unless other is 

specified.  

I consider the following estimators: OLS, fixed effects (FE), Schmidt’s instrumental 

variables (SIV), Blundell-Bond (BB), COV and, where possible, Levinsohn-Petrin (LP). I use 
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STATA’s commands xtabond2 and levpet for the BB and LP estimators, respectively. 

Schmidt’s (1988) IV estimator uses (if necessary leads or lags of) input ratios as instruments for 

inputs. COV is estimated by first-difference MLE. I redesign COV estimator for each 

experiment, that is, I impose restrictions that are relevant for the given data generating process.  

5.1. ONE-INPUT/ONE-OUTPUT 

The data generating process (DGP) for this set of experiments is given in (12)-(15). I start with 

the simplest calibration that allows no measurement error (Parameterization A, Table 2). 

Proposition 2 ensures unique global identification of the COV estimator. SIV with ( )it ity z−  as 

the instrument for zit is also consistent. Note, however, that COV is overidentified while SIV is 

exactly identified and thus SIV has larger variance than COV.22 OLS and FE have a predictably 

large bias in the estimated returns to scale. Although BB has a smaller bias than OLS, the 

reduction in the bias is small and the standard deviation of the estimates increases substantially. 

Figure 1 presents the kernel densities of the estimates. In agreement with my theoretical 

predictions, the density of the BB estimator is essentially flat, which is typical for all 

experiments and parameterizations that I consider.  

Next, I add measurement error to y and z (Parameterization B, Table 2). Again 

Proposition 2 guarantees global identification of the COV estimator. SIV with , 1 , 1( )i t i ty z− −−  as 

the instrument is consistent but it has standard deviation larger than that of COV. BB is 

considerably worse than FE in terms of MSE. Even OLS has a smaller MSE than BB. The 

somewhat better performance of OLS and FE can be explained by the fact that the measurement 

error attenuation (downward bias) partially offsets the upward transmission bias. This is 

particularly important for FE because the signal to noise ratio for FE falls more than that for OLS 

(see Griliches and Hausman 1986).  

In the next experiment, I add serially correlated measurement error to the input x 

(Parameterization C, Table 2). In particular, I assume that the measurement error is 

, 1
z z
it z i t iteε ρ ε −= +  with 20.8, 1x eρ σ= = . Propositions 3, 4 and 7 formally prove that COV is 

globally identified. Note that SIV is not consistent because the input/output ratio is correlated 

with the measurement error and, consequently, the SIV’s instrument is correlated with the error 
                                                 
22 In fact, SIV does not have even first moments because it is exactly identified (Kinal 1980). It is an easy extension 
to make SIV overidentified by using leads or lags of input ratios wherever appropriate.  



 - 28 -

term in the production function at all leads and lags. Serial correlation of the measurement error 

deteriorates the signal to noise ratio and the attenuation bias becomes stronger. This further 

offsets the transmission bias in OLS and FE estimates. In contrast to serially uncorrelated 

measurement errors, the bias in the BB estimator is reduced but the standard deviation increases 

because the production function is quasi-differenced twice.  

Finally I consider the case when the factor price and productivity shocks are positively 

correlated. Specifically, I set ( , ) 0.7it ita wρ = . This correlation invalidates the SIV estimator 

because any lead/lag of ( )it ity z−  is correlated with the residual in the production function. To 

highlight the consequences of the correlation, I assume no measurement errors. Calibration and 

results are presented in Panel D, Table 2. Because ( , ) 0it itw aρ ≠ , SIV has a very large downward 

bias so that the estimate of returns to scale is negative. Proposition 2 guarantees global 

identification of the COV estimator. COV is the only consistent estimator. Note that the bias in 

OLS, FE and BB estimates of RTS increases considerably because there is less exogenous 

variation in factor prices. FE is more biased than BB but FE dominates BB in terms of MSE.  

5.2. MULTI-INPUT/ONE-OUTPUT 

In this section I consider a more realistic setup with multiple inputs (capital, labor and materials) 

as in Section 4.3. The data generating process is given by (19)-(22) and the estimated production 

function is (18). I set 0.1 , 0.2 , 0.7K L Mβ η β η β η= = = . I assume diagonal Ω  and Π , i.e., factor 

price and productivity are uncorrelated. Because capital is predetermined at time t, the 

appropriate instrument for capital in SIV is 1
, 1 , 1 , 1( ) ( 1 ) a

i t i t K i t ity k rη β υ−
+ + +− = − − − +  that is 

uncorrelated with ai,t-1 and a
itυ .23  

In the first experiment, I consider the case with no measurement error. Panel A, Table 3 

summarizes the calibration and reports the results. COV has the smallest median bias and MSE. 

SIV has no bias in estimated returns to scale in the revenue function η but the variance of the 

estimate is large (recall that SIV is exactly identified). The LP estimator does better than OLS 

but LP still has a sizable upward bias, which is consistent with my theoretical predictions. 

Furthermore, computationally simpler FE has performance very close to that of the LP estimator. 

                                                 
23 Timing of shocks modifies the moments used in the BB estimator. However, the fact that output, labor and 
materials are determined simultaneously and the response of labor, materials and revenue to υa is the identical, leads 
to the reduced rank problem for the BB estimator (see proof of Proposition 5).  
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The BB estimator has a large negative bias in the coefficient on materials and the largest upward 

bias on the coefficient on labor. Nonetheless, BB has a relatively small bias in the estimated 

returns to scale. I plot the kernel density of the estimators in Figure 2. Observe that the density of 

the LP estimator almost coincides with FE’s density. Also note the flat density of the BB 

estimator.  

To show the importance of the small profit share for the estimate of the bias, I vary the 

demand elasticity so that profit share ranges from 50% to 0%. Figure 3 plots the bias as a 

function of the profit share. Note that BB, SIV, and LP reduce the bias relative to OLS but as 

profit share falls these estimators yield only a minor reduction in the bias. Interestingly, LP only 

marginally improves upon FE. Given that LP and BB tend to have larger variance than OLS, it is 

not clear if popular solutions to the transmission bias are better in terms of MSE than the OLS 

estimate.  

In the next experiment, I add a small measurement error to inputs and revenue to assess 

the sensitivity of BB and inversion-based LP to measurement errors. Calibration and results are 

reported in Panel B, Table 3. Predictably, the attenuation bias partially offsets the transmission 

bias and, thus, the estimates of RTS are less biased than in the absence of measurement errors. 

Nonetheless, BB has an increased bias because one has to take more distant lags in the moment 

conditions. This greatly deteriorates the performance of the estimator. Although the LP estimator 

has a smaller bias in the estimated returns to scale η, the upward bias in the coefficient on 

materials is reallocated to the upward bias in the coefficients on capital and labor. Overall, LP is 

very similar to FE. Only, SIV and COV yield consistent estimates in this experiment.  

Next I examine the case with an upward-sloping labor supply curve. I set the elasticity of 

the labor cost to 1.5Lφ =  and I assume no measurement error. Importantly, although the base 

wage log(Wit) is uncorrelated with productivity ait, the log of wage 1
it itW Lφ−  is correlated with ait. 

Since the log wage is correlated with ait, SIV is not consistent. Note that the OLS, BB and FE 

estimates exceed unity although the true returns to scale in the revenue function is 0.55. Only 

COV estimate the parameters consistently. 

In the next series of experiments, I assume quadratic costs of adjustment for capital and 

keep the rest of the assumptions. In brief, the firm solves the following dynamic problem:  
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where I is investment, ψ is the adjustment cost parameter, small letter denote logs of the 

respective variables. In all simulations I set 6ψ = , which is consistent with the available 

estimates of adjustment costs (e.g., Gordon 1992), and estimate with other parameters of the 

model. I log-linearize the first-order conditions and constraints. Because the analytical solution 

to the above problem is highly complicated, it is hard to establish that the covariance estimator is 

uniquely globally identified. However, since the numeric solution can be readily written in the 

state-space form (see Appendix A, section 7.3), it is straightforward to establish local 

identification of the parameters by checking the rank of the Jacobian.  

Using the log-linearized solution to the model, I generate artificial data sets and feed 

them into various estimators. Table 4 presents the results for the cases with perfectly and 

imperfectly elastic factor supply curves and with/without measurement errors. In the baseline 

experiment with perfect competition in factor markets ( 1φ = ) and no measurement errors 

(parameterization A), OLS, FE and BB estimates are biased so much that the estimated returns to 

scale are increasing (recall that the true returns to scale in the revenue function is equal to 0.55). 

Consistent with the argument in section 4.2, BB estimates have large standard errors, which 

indicate poor identification of the estimator. Although LP estimator has a smaller bias than other 

estimators, the size of the bias remains very large. SIV produces implausible estimates because 

the shadow price of capital is correlated with technology and, hence, no lead or lag of output to 

capital ratio is a valid instrument for the level of the capital stock. This correlation of shadow 

price of capital and technology is the key to understanding why the conventional estimators yield 

increasing returns to scale even when true returns are well below unity. Because of the 

attenuation bias, adding measurement error (parameterization B) reduces the bias in the 

estimated returns to scale. In the case with an upward-sloping labor supply curve 

(parameterization C, 1.5φ = ) the bias tends to increase in the estimate of Lβ  and decrease in the 

estimate of Kβ . Nonetheless, because Lβ  and Kβ  have a small contribution to the returns to 

scale (recall that the elasticity of output with respect to material is 0.7), the bias in the estimate of 
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RTS barely changes. Note that in all cases, the covariance estimator performs well, although the 

standard error of the coefficient on capital is somewhat large. 

5.3. DISCUSSION 

The results of Monte Carlo experiments are in agreement with my theoretical predictions 

that LP is biased upwards and BB is poorly identified. SIV is extremely sensitive to serially 

correlated measurement errors and (shadow) factor prices correlated with technology. The 

experiments show that simpler OLS and FE have performance comparable to that of BB and LP. 

If the profit share is small, the reduction in the bias from using BB and LP is offset by an 

increase in the variance of the estimates. Hence, in empirically plausible settings with small 

profit shares, it is useful to compare estimates from sophisticated techniques with OLS estimates.  

Importantly, the Monte Carlo experiments suggest that the puzzling estimates of returns 

to scale in the revenue function can arise because statistical estimators fail to provide consistent 

estimates of returns to scale. In the next section, I contrast the estimates of competing techniques 

when applied to real data.  

6. APPLICATION 

In this section, I apply the COV estimator to a well-known data set of Chilean manufacturing 

plants. Lui (1991, 1993), Lui and Tybout (1996), Pavcnik (2002) and Petrin and Levinsohn 

(2005) describe the data in detail. To illustrate the estimator, I focus on SIC 3240 industry 

(Manufacture of footware).24 The annual data spans from 1982 to 1996. Descriptive statistics for 

logs of real value added, real capital stock and labor are presented in Table 5 and 6 

I assume that inverse demand function is given by 1
it itP GQ σ−= , where σ is the demand 

elasticity, the markup is ( 1)μ σ σ= − , G is a demand shifter. The production function is 

described by min{ , }K L
it it it it itQ A M cK Lα αμ=  where Qit is output in physical units, Mit is the input of 

materials, Kit is capital, Lit is the number of employees, Ait is the level of Hicks-neutral 

technology ( itA  to the power of μ is a normalization), c is a constant of proportionality. This 

functional form imposes zero substitution between materials and combined capital/labor inputs. 

Since at the optimum no resources are wasted, K L
it it itM cK Lα α=  and, hence, the profit function is 

                                                 
24 I am grateful to Jim Levinsohn for providing me with the data.  
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given by M
it it it it it it it it itP Q p M R K W Lπ = − − − = it it it it itVA R K W L− − , where VAit is the value added, 

Rit and Wit are the cost of capital and labor for firm i at time t.25 In the data, the share of materials 

in total cost is 0.66.  

I assume that capital is supplied in perfectly competitive markets. The slope of the labor 

supply curve is a free parameter. In particular, I assume that the wage function is given by 
1( )it it itW L W Lφ−=  so that the wage bill is ( )it it it it itW L L W Lφ= . I further assume that capital, labor, 

and revenue are chosen simultaneously. I allow serially correlated errors in all observed 

variables, which are capital, labor and revenue.26 Unobserved technology and factor prices are 

serially correlated and there could be feedback from technology to factor prices and vice versa. I 

assume that innovations to technology and factor prices are uncorrelated. In summary, the 

estimated model is  
* *
it it ity k r− = , (27) 
* * *( 1)it it it ity l w lφ− = + − ,  (28) 
* * *
it it K it L ity a k lβ β= + + , (29)  

, 1 , 1 , 1
a

it aa i t aw i t ar i t ita a w rρ ρ ρ υ− − −= + + + ,  (30) 
0 0

, 1 , 1 , 1
w

it wa i t ww i t wr i t itw a w rρ ρ ρ υ− − −= + + + , (31) 

, 1 , 1 , 1
r

it ra i t rw i t rr i t itr a w rρ ρ ρ υ− − −= + + + ,  (32) 
* y

it it ity y u= + ,  (33) 
* k

it it itk k u= + ,  (34) 
* l

it it itl l u= + ,  (35) 

, 1
y y y
it y i t itu uρ ε−= + ,  (36) 

, 1
k k k
it k i t itu uρ ε−= + ,  (37) 

, 1
l l l
it l i t itu uρ ε−= + ,  (38) 

                                                 
25 This trick helps to circumvent the problem of measuring the quantity of the materials input. Note that in the vast 
majority of cases the researcher knows only the nominal spending on materials and the quantity of the material input 
is obtained by deflating the nominal spending with industry-level material price index. Since the mix of intermediate 
inputs varies across firms and the price index is the same for all firms in any given period, the computed quantity of 
the material input can be poorly correlated with the true quantity of the material input. In the case of the Cobb-
Douglass production function, the nominal spending on materials is proportional to revenue and, hence, including 
the deflated expenditures on materials should yield perfect collinearity. Stochastic errors (e.g., optimization errors, 
measurement errors) can break the collinearity but the coefficient is still likely to be close to unity, which is often 
the case in applications. 
26 In the case of revenue, errors can be interpreted as innovations to technology or demand that are not transmitted to 
input choices (see Zellner, Kmenta and Dreze 1966). 
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where small letters denote logs of the respective variables with lnit ity VA= , stars denote true 

values, { , , , , , }a w r y k l
it it it it it itυ υ υ ε ε ε  are uncorrelated i.i.d. innovations. Parameters of interest are Kβ , 

Lβ  and returns to scale in the value-added function K Lη β β= + . Equations (27) and (28) are the 

first order conditions for capital and labor. Equation (29) is the value-added production function. 

Equations (30)-(32) describe the evolution of structural shocks to productivity and factor prices. 

Measurement equations are collected in (33)-(35). Dynamics of the measurement errors is in 

equations (36)-(38). The equations can succinctly rewritten in the matrix form that corresponds 

to the state space representation in (8)-(9):  
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The model has 21 parameters: 

{ , , , , , , , , , , , , , , , , , , , , }K L aa aw ar wa ww wr ra rw rr a w r y k l y k lυ υ υ ε ε εθ β β φ ρ ρ ρ ρ ρ ρ ρ ρ ρ σ σ σ σ σ σ ρ ρ ρ= , 

where , ,a w rυ υ υσ σ σ  are standard deviations of innovations to productivity ( a
itυ ), wages ( w

itυ ) and 

interest rate ( r
itυ ), , ,y k lε ε εσ σ σ  are innovations to measurement errors in value added ( y

itε ), 

capital stock ( k
itε ), and labor input ( l

itε ). Although it is straightforward to verify that the model is 

locally identified almost everywhere, global identification is hard to show algebraically. To 

verify that there are no other solutions, I experiment with different starting values. I use MLE 

given in (11) to estimate the model.  



 - 34 -

I report the estimation results in Table 7, column 1. Since the data is not normally 

distributed, I bootstrap the estimates to correct the bias and improve the confidence intervals.27 

Using bootstrapped critical values, I do not reject the model at any conventional significance 

level (p-value=0.4). To contrast the results, I estimate production function it K it L it itv k lβ β ξ= + +  

by OLS, FE, LP, and BB estimators and report these results in columns 2 to 7 in Table 7. I report 

two versions of the BB estimator: quasi-differenced (column 6) and twice-quasi-differenced 

(column 7).  

BB, LP and FE estimators yield RTS in a 0.62 to 0.9 range. These estimates suggest a 

very large 10-38% profit share in value added if factor markets are perfectly competitive. In 

contrast, the observed (accounting) profit share in value added is 2%.28 Also observe that 

consistent with our theoretical results and Monte Carlo experiments, the BB estimator has very 

large standard errors and LP estimates are close to FE estimates. On the other hand, the OLS 

estimate (RTS=1.30) is inconsistent with profit maximization if factor markets are perfectly 

competitive. In addition, OLS estimate of βL imply increasing returns in labor. The SIV estimator 

yields implausibly large returns to scale. This cacophony in the estimates can be reconciled by 

the COV estimates.  

First, note that the COV estimates returns to scale in the revenue function to be 1.17, 

which is in line with our argument that the bias in the OLS estimate of returns to scale is likely to 

be relatively small. Second, the estimate of φ  is greater than unity and, thus, the firm faces an 

upward-sloping labor supply curve. Since OLS is biased to φ , the OLS estimate of RTS is 

greater than COV estimate of RTS. Third, I find relatively large measurement errors. These 

errors tend to attenuate the estimates toward zero, especially when estimates are from within 

variation. This can explain why FE, BB, and LP produce low returns to scale. Note that the small 

coefficient on capital in BB is consistent with strong downward bias in βK in my Monte Carlo 

experiments with serially correlated measurement errors. Finally, since the SIV estimator uses 

output to input ratios as instruments and measurement error is present in inputs and factor prices 

                                                 
27 I use non-parametric bootstrap with resampling firms. See Horowitz (1998) for the discussion of bootstrap for 
covariance structures.  
28 The profit share is computed as the ratio of aggregate gross profit to aggregate value added. Although it is hard to 
sign the bias of the accounting profit as a measure of economic profit, the small magnitude of the profit share 
consistent with the discussion in section 2. Alternative definitions of the profit share are in the range of 0.2% to 
2.5%.  



 - 35 -

are correlated with technology, the instruments used in the SIV are correlated with the error term 

in the production function so that the estimates of βL and βK behave wildly.  

Increasing returns in the revenue function do not contradict profit maximization because 

the labor supply curve is upward sloping. Specifically, the elasticity of the labor cost 1.42φ =  

(i.e., the wage premium is 42%) is generally in agreement with the estimates from previous 

studies. For example, Shapiro (1986, 1996) and Bils (1987) estimate from the aggregate US data 

that the shift premium is about 25-40%. Manning (2004) observes that a plausible elasticity of 

the labor supply is between 2 and 10. In the present case, the implied elasticity of the labor 

supply curve 1/( 1) 2.4φ − =  falls nicely in this interval.  

According to (A.3) in Appendix A, I find that the implied elasticity of the cost for capital 

and labor is 1.21 and elasticity of the cost for all inputs is 1.07. Using (A.4) in Appendix A to 

compute the profit share from the COV estimates, I find that the profit share is 1.3%, which is a 

significant improvement in comparison to other estimators.  

Note that variation in factor prices is comparable to variation in productivity ait. 

Specifically, the point estimates in Table 7 imply that ( ) 0.332itaσ = , ( ) 0.513itwσ = , 

( ) 0.230itrσ = . This supports other evidence on the dispersion of prices even in narrowly defined 

industries. I also conclude that ignoring variation in factor prices across firms can lead to serious 

identification problems for the inversion-based estimators. Finally, since markup 1μ ≥  and 

returns to scale in production function γ μη η= ≥ , one can expect sizable increasing returns to 

scale in production.   

7. CONCLUSION 

This paper has critical and constructive parts. In the critical part, I demonstrate that under weak 

assumptions estimates from production function regressions using firm-level data are often 

inconsistent with profit maximization or imply implausibly large profits. Specifically, I argue 

that firm-level data limitations lead to estimating returns to scale in the revenue function. On the 

other hand, I prove that returns to scale in the revenue function cannot be greater than unity as 

long as the profit share in revenue is non-negative and factor supplies are perfectly elastic. This 

sharply contrasts with frequent finding that returns to scale in the revenue function at the firm 

level exceed unity. On the econometric front, I point out that inversion-based estimators and 
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GMM/IV estimators that use lags of endogenous variables as instruments can be poorly 

identified so that the estimates of returns to scale can be seriously distorted.  

In the constructive part, I show that under weak assumptions the elasticity of the factor 

supply can reconcile increasing or large decreasing returns in the revenue function and a small 

non-negative profit share. Furthermore, I argue that simple structural estimators that model the 

cost and the revenue function simultaneously and treat unobserved heterogeneity in productivity 

and factor prices symmetrically can resolve many of the problem I identify above. I provide and 

example and illustrate the strength of the suggested estimator in Monte Carlo simulations and in 

an empirical application.  

The paper has broader implications. First, I argue that the profit share can be used as a 

robust non-parametric economic diagnostic for estimates of returns to scale. Second, although I 

analyze only one industry, it is clear that variation in product and factor prices at the firm-level is 

not trivial. This entails important consequences for aggregating firm-level data (and devastating 

effects on the inversion-based estimators). Specifically, reallocation effects due to heterogeneity 

in factor prices are likely to be of first-order importance. Furthermore, productivity aggregates 

measure revenue generating ability in the industry rather than technical efficiency. Third, since it 

is fairly common to find constant returns to scale in the revenue function at the firm level and 

markup is not less than unity, returns to scale in production at the firm level can be sizeable. 

Hence, business cycle and trade models appropriately calibrated can produce qualitatively 

different results. In addition, the gap between RTS in aggregate data and RTS in firm-level data 

is smaller than thought before. Fourth, factor supply curves are likely to be upward sloping at the 

firm level. This means that the cost-weighted composite input does not measure the total input 

correctly and factor prices can be procyclical irrespective of the source of the shocks.  
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APPENDIX A: ALTERNATIVE ECONOMIC MODELS  

8.1. MULTI-INPUT CASE 

This appendix presents the multi-input analogue for the model considered in Section 2.1. The 
production function is assumed to be Cobb-Douglas: 1

,1
jn

it it j itj
Q A Lαμ

=
= ∏  where i, t, j index firms, time, and 
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= ∑  is returns to scale in production, Ait is Hicks-neutral firm-specific productivity, and Lj,it is 

jth input. The inverse demand function is isoelastic 1/
it it itP G Q σ−= ⋅  where Pit is the price of the good, Qit is the 

quantity of the good, G is a demand shifter, and σ  is the elasticity of demand. The markup is /( 1)μ σ σ= − . 

Hence, the revenue function is 1 1
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= ∑  is returns to scale in the revenue function. Also note that Ait and Git are isomorphic in the 

revenue function so that the econometrician cannot separate these shocks. Hence, I drop Git from the analysis 
and concentrate on Ait only. The cost for input j is given by , ,( ) j

j j j it j itC L W Lφ=  where jφ  is the elasticity of the 
cost of input j. The profit maximization problem is then  
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I take logs of the first order conditions, suppress uninteresting constants, partial out industry-wide shocks, and 
get the following expressions for optimal input choices and revenue  
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the necessary and sufficient condition for the profit function to be concave.  
One can use information from the first order conditions to compute the cost shares. Observe that for 

each input j, the first order condition is 1
, , ,

j
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The elasticity of the cost with respect to all inputs is  

1
1

1

n
n hh

h h nh
h hh

β
φ ω φ

β φ
=

=

=

= = ∑∑
∑

. (A.3) 

Using this expression one can find the profit share in terms of cost and revenue elasticities:  
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8.2. CONSTANT ELASTICITY OF SUBSTITUTION (CES) PRODUCTION FUNCTION 

Consider the CES production function 1 1 1( )K LQ A K Lμ ρ ρ γρω ω= +  where 1
1 ρ−  is the elasticity of 

substitution. In this example, I assume that productivity and factor prices are mutually uncorrelated. 
Otherwise the structure is the same as in the Cobb-Douglas case. The profit function is given by: 

1 1( )K LA K L RK WLρ ρ γρ μπ ω ω= + − − . The first order conditions with respect to capital and labor are: 
/Ks Y K Rη = , /Ls Y L Wη =  where 1 1 1/( )K K K Ls K K Lρ ρ ρω ω ω= + , 1L Ks s= − . After log-linearizing first-

order conditions and the revenue function, one has the following structural equations: K Ly s k s l aη η= + + , 
( )Ly k s k l rρ− + − = , ( )Ky l s l k wρ− + − = . The reduced form is  
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The model has six parameters: { , , , , , }K a w rsθ η ρ σ σ σ= . It is straightforward (but tedious) to show that 
( )E XXθ ′∇  has full rank and, hence, the model is locally identified almost everywhere.  

8.3. RATIONAL EXPECTATIONS  

Following Anderson and Moore (1985), one can show that, after log-linearization, rational profit-maximizing 
producer behavior can be summarized as follows: 

12 13 1 1

22 23 1 2 1

33 1 3

0
0
0 0

t t

t t t t t t

t t

B
B B
B

−

− −

−

Π Π⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥≡ = Π Π + = Π +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

Π⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

G G
S H H υ S υ

Z Z
 (A.5) 

where Gt is px1 vector of endogenous non-predetermined variables (e.g., materials), Ht is mx1 vector of 
endogenous predetermined variables (e.g., capital), Zt is nx1 vector of exogenous variables, tυ  is vector of 
innovations to exogenous variables. The econometrician observes only Gt and Ht. The number of shocks is 
not less than the number of observed variables, i.e., n m p≥ + . No assumptions are made about the sources of 
shocks υt, which can be shocks to adjustment costs, factor prices, productivity, etc. Hence, the setup is very 
general.  

The autocovariance matrix of the observed variables collected in [ ]t t t t
′′ ′= = ϒX G H S  with 

[ 0]p mI +ϒ ≡  is given by 0( ) k
k t t kE −

′′Γ ≡ = ϒΠ Γ ϒX X , k=0,1,…, where 0 ( )t tE ′Γ ≡ S S , 
1

0( ) ( ) ( )m p nvec I vec B B−
+ + ′Γ = − Π⊗Π Ω , and ( )t tE ′Ω ≡ υ υ . Given that kΓ , k=0,1,…, and matrices , BΠ  are 

deterministic one-to-one functions of structural parameters, one can use methods presented in section 3.4 to 
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set up likelihood function for MLE. Specifically, the log-likelihood function for the no-firm-specific-effects 
and no-measurement-error case is given by 1

1
ˆ ˆ( , ) ln | | { } ln | |N

i T T T Ti
l trace Tnθ −

=
= Φ + Φ Φ − Φ −∑ X  where 

1
1

ˆ N
T i iN i=

′Φ = ∑ X X , n is the number of observed choices of firms, and  

00

1 0

1 0
0 0 0

T

TT

⎡ ⎤′ϒΓ ϒ⎡ ⎤Γ ⎢ ⎥⎢ ⎥ ′⎢ ⎥Γ ϒΠΓ ϒ⎢ ⎥Φ ≡ = ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥Γ Γ Γ⎣ ⎦ ′ ′ ′ϒΠ Γ ϒ ϒΠΓ ϒ ϒΓ ϒ⎣ ⎦

. 

The likelihood can be easily extended to cases with measurement errors and firm-specific effects.  
Note that model (A.5) is highly nonlinear in structural parameters. Hence, global identification is hard to 

prove in general. Local identification is easy to verify (numerically) by checking the rank of the relevant 
Jacobian.  
 

8.4. IDENTIFICATION IN MODELS WITH ADJUSTMENT COSTS 

In this section I show that, under certain assumptions, the Blundell-Bond estimator is poorly identified even 
in the presence of adjustment costs. In the spirit to the results in Section 4.2, poor identification arises because 
profit maximization imposes restrictions on the dynamic and contemporaneous comovement of inputs and 
output. The following proposition gives the necessary condition for identification of the BB estimator for any 
rational expectation model described by (A.5) in Appendix A (Section 9.3).  

Proposition 6.  

Consider rational profit-maximizing firm characterized by the reduced-form dynamics as in 
(A.5). Then if 2(m+p)-1>m+n, the unconstrained Blundell-Bond estimator is not identified.  
Proof: see appendix C.  

Note that this proposition gives only a necessary condition for identification of the Blundell-Bond 
estimator. Profit maximization can impose further restrictions on the dynamic and contemporaneous 
correlation between variables so that the estimator is not identified even when the presented necessary 
condition is satisfied. The following proposition provides an important example where BB is not identified 
although the necessary condition is satisfied.  

Proposition 7.  

Consider rational profit-maximizing firm characterized by the reduced-form dynamics as in 
(A.5). Suppose that 33Π  is diagonal and that output and one of the inputs are free to adjust 
contemporaneously in response to shocks. Then the unconstrained Blundell-Bond estimator 
is not identified if the production function is Cobb-Douglass.  
Proof: see appendix C. 

Using the argument of Proposition 4 it is straightforward to show that even when BB is locally 
identified, there could be several solutions.
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9. APPENDIX B: PROOFS  

Proof of Proposition 1.  
Consider cost minimization problem, which is implied by profit maximization: 

1 1
( ,..., ) arg min{ ( ) : ( ) }n

s j jjL
L L L w L f L Q

=
≡ = =∑ , where ( )j jw L  is the cost for input Lj and Q is output. I 

assume that the total cost is separable in inputs, i.e., 
1

( ) ( )n
j jj

w L w L
=

= ∑ . If factor markets are competitive, 

then ( )j j j jw L w L= .  
The first order condition gives ( ) ( )j j jw L f Lλ′ ′=  for 1,...,j n=  where λ  is the Lagrange multiplier 

and f is the production function. Multiply both sides by Lj for each j sum over j to get  

1 1
( ) ( )n n

j j j j jj j
w L L f L Lλ

= =
′ ′= ⇔∑ ∑  

( )1 1

( ) ( )
( ) ( ) ( )

( )

n n
j j j j j

j j
j jj j

w L L w L
Q AC Q MC Q f L L

w L TC Q= =

′
′⋅ ⋅ = ⋅ ⇔∑ ∑   

1 1

( ) 1 ( )
( )

n n

j j j j
j j

AC Q f L L
MC Q Q

φ ω
= =

⎛ ⎞
′= ⇔⎜ ⎟

⎝ ⎠
∑ ∑  (by Euler’s theorem) ( )

( )
AC Q
MC Q

φ γ= ,  

where jφ  is the elasticity of jth factor price, ωj is the share of factor i in total cost TC(Q), 
1

n
j jj

φ φ ω
=

= ∑  is the 

elasticity of the cost with respect to inputs, AC(Q) and MC(Q) are average and marginal costs. If factor 
markets are competitive, 1jφ =  for all j and hence 1φ = . Now observe that profit share is equal to 

( ) ( )1PQ AC Q Q AC Qs
PQ Pπ

− ⋅
= = − . It follows that ( ) ( ) (1 ) (1 )AC Q MC Q s sπ πγ φ φ μ γ μφ= = − ⇔ = − , 

where ( )P MC Qμ =  is the markup.  
Since marginal revenue (MR) is equal to marginal cost for a profit-maximizing firm, one has 

1 1
( ) ( ) ( ) ( ) ( )n n

j j j j j jj j
TR L MR Q L TR L L MC Q L L MC P PQγ

= =
∂ ∂ = ∂ ∂ ⇒ ∂ ∂ = ∂ ∂ =∑ ∑  and hence  

1
( )n

j jj
TR L L

PQ
γη
μ

=
∂ ∂

= =
∑

■ 

  
Proof of Corollary 1. 
Consider cost minimization problem: 

1
1 1 1,...,

( ,..., , ,..., ) arg min{ ( ) : ( ) }
k

n
k k n j jjL L

L L L L L w L f L Q+ =
≡ = =∑ , where 

( )j jw L  is the cost function for input Lj, f is the production function and Q is output and k+1,…,n inputs are 
fixed. Using the arguments of Proposition 1, one can show that the first order condition with respect to 
variable ( ) ( )j j jw L f Lλ′ ′=  for 1,...,j k=  (λ  is the Lagrange multiplier) yield: 

1 1
( ) ( )k k

j j j j jj j
w L L f L Lλ

= =
′ ′= ⇔∑ ∑  

1

1 1
1

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

k
k k

i i j j j j ji
j jk

j jj j i ii

w L w L L w L
Q AC Q MC Q f L L

TC Q w L w L
=

= =
=

′
′⋅ ⋅ = ⋅ ⇔∑ ∑ ∑

∑
  

1

1 1

( )( ) 1 ( )
( ) ( )

k
k k

i ii
j j j j

j j

w LAC Q f L L
MC Q TC Q Q

φ ω=

= =

⎛ ⎞
′= ⇔⎜ ⎟

⎝ ⎠

∑ ∑ ∑  (by Euler’s theorem)  
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* * *( )
( )

AC Q
MC Q

φ ω γ= ,  

where *ω  is the cost share of variable inputs in total cost, *
1

k
j jj

φ φ ω
=

= ∑  is the elasticity of cost with respect 

to variable inputs, *γ  is returns to scale in production with respect to variable inputs, AC(Q) and MC(Q) are 
average and marginal costs. Now observe that profit share is equal to * 1 ( ) /s AC Q Pπ = − . It follows that  

* * * * * * * * * *( ) ( ) (1 )
( ) ( )

AC Q AC Q P s
MC Q P MC Q πφ ω γ φ ω γ μφ ω γ= ⇔ = ⇔ − =  

where ( )P MC Qμ =  is the markup.  
Since marginal revenue (MR) is equal to marginal cost for a profit-maximizing firm, one has  

1 1
ˆ( ) ( ) ( ) ( ) ( )k k

j j j j j jj j
TR L MR Q L TR L L MC Q L L MC P PQγ

= =
∂ ∂ = ∂ ∂ ⇒ ∂ ∂ = ∂ ∂ = ⇒∑ ∑   

*
1*
( )k

j jj
TR L L

PQ
γη
μ

=
∂ ∂

= =
∑

, 

where *η  is returns to scale in the revenue function with respect to variable inputs. By combining the results, 
one can find: * * * * *(1 )sπη γ μ φ ω= = − .■ 

 
Proof of Proposition 2 

Without loss of generality assume that there are two inputs and one output, the first input is supplied 
in a competitive market. Suppose there are two solutions θ  and θ . To satisfy restrictions imposed by profit 
maximization, the matrix Λ  must possess the same structure and properties as Λ .  

Because , ,TΛ Λ  are invertible, 1T −Λ = Λ  implies that  

1 2 2 2
1

1 2 2 2 2 1 2 2
1 2 2 2

1 1 1 2 1 2 1 1 2 2 2 1 2 2 1

0 0
1 ( )  (1 )

( ) - (1 )+ (1 )
T

β φ β φ
β φ φ β φ β φ φ

β φ β φ
β φ β β β φ β β β β β β β φ β

−

⎡ ⎤+ −
⎢ ⎥= Λ Λ = − − − −⎢ ⎥+ − ⎢ ⎥− − − + − − − −⎣ ⎦

 (C.1) 

Note that 1 2 2 2 1 2 2 2det( ) ( ) ( ) 0T β φ β φ β φ β φ= + − + − ≠  and the solution θ  must have 1 2 2 2 0β φ β φ+ − < . 
Thus, the model is not identified unless further restrictions are imposed.  

Now consider  
11

21 222
1 2 2 2

31 32 33

1
( )

D
T T D D

D D D
β φ β φ

⎡ ⎤
⎢ ⎥′Ω = Ω = ⎢ ⎥+ −
⎢ ⎥⎣ ⎦

, 

where D11, D22, D33 are positive quantities and 

21 2 1 2 2 1 2 2 11( + ) ( )D β β φ φ β φ φ σ= − − , 31 2 1 2 2 1 2 2 1 2 2 11( + )[ ( - ) ( )]D β β φ φ β φ β β φ β σ= − − + − ,  

32 2 2 1 2 2 1 2 2 11 2 2 1 2 1 2 2 1 22

2 2 1 2 2 2 33

( )[ ( ) ( )] +[ (1- )][ (1- )] +

+( )( + ) .

D φ φ β φ β β φ β σ β φ β β β β β β σ

φ φ β φ β φ σ

= − − − − − − −

− −
 

The restriction that Ω  is diagonal implies that 21 31 32 0D D D= = = . From D21=0 it follows that 2 2φ φ=  

since 1 0β ≠ . Hence, 31 32 0D D= =  implies that  

1 2 2 1 2 2( ) ( - ) 0β φ β β φ β− − =  (C.2) 

2 1 2 1(1 ) (1- ) 0β β β β− − =  (C.3) 

The only solution to this system of equations is 1 1β β=  and 2 2β β=  implying that T=I and, thus, the 
model is uniquely globally identified.  
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For a general model with a productivity shock and n inputs and associated factor prices, the first entry 
of the first row of T in (C.1) will continue to be non-zero while other entries of the row are zeros. This fixes 

j jφ φ=  for j=2,…,n and then it is an easy step to show that n-input analogue of (C.2)-(C.3) has unique 

solution j jβ β=  for j=1,…,n. This proves part a. 
To prove part b, again, without loss of generality, assume that there are two inputs and one output and 

that the first input is supplied in a competitive market. Suppose there are two solutions θ  and θ . Then by 
assumptions of the proposition, the following matrix must be diagonal 

11
1

21 22 23

31 32 33

0 0
1

| || |

D
T T D D D

T
D D D

−

⎡ ⎤
⎢ ⎥Π = Π = ⎢ ⎥Λ
⎢ ⎥⎣ ⎦

 

where D11, D22, D33 are non-zero quantities and 

21 2 2 1 11 1 2 2 2 1 22 1 2 2 1 2 2 33( )[| | ( ) ( ( ) ( - )) ]D φ φ β β φ β φ β β φ β β φ β= − Λ Π − + − Π − − − Π ,  

31 1 2 2 1 2 2 11 1 2 1 2 1 2 2 22

1 2 2 2 1 2 2 1 2 2 33

| | [ ( )- ( )] -[ (1 )- (1 )] ( ) +

+( )[ ( ) ( )] ,

D β φ β β φ β β β β β β φ φ

β φ β φ β φ β β φ β

= Λ − − Π − − − Π

+ − − − − Π
 

32 2 1 2 1 1 2 2 2 33 22[ (1 ) (1 )]( )( )D β β β β β φ β φ= − − − + − Π −Π , 

23 1 2 2 2 2 2 22 33( )( )( )D β φ β φ φ φ= + − − Π −Π . 
The restriction that 1T T− Π  is diagonal, implies that 21 23 31 32 0D D D D= = = = . Suppose that 

22 33Π ≠ Π . From D23=0, 2 2 1 2 2 2( )( ) 0φ φ β φ β φ− + − = . Suppose that 2 2φ φ= . Then D21=0 and D31=D32=0 
imply that 

1 2 2 1 2 2( ) ( ) 0β φ β β φ β− − − =  (C.4) 

2 1 2 1(1 ) (1 ) 0β β β β− − − =  (C.5) 

provided that 33 11 0Π −Π ≠ . The only solution to (C.4) and (C.5) is 1 1β β=  and 2 2β β=  implying that T=I 
and, thus, the model is uniquely globally identified almost everywhere. 

Now suppose that 2 2φ φ≠  so that 1 2 2 2 2 2 10 (1 )β φ β φ φ β β+ − = ⇔ = − . Suppose that 

2 1 2 1 2 2 1 1(1 ) (1 ) 0 (1 ) (1 )β β β β β β β β− − − = ⇔ = − −  from D32=0. Substitute 2 2,φ β  in D21=0 and reach the 

contradiction that 2 0β = . Now suppose that 1 2 2 2 2 2 10 (1 )β φ β φ β φ β+ − = ⇔ = −  from D32=0. Substitute 

2 2,φ β  into | |Λ  and find that | | 0Λ =  which contradicts | | 0T ≠ . Hence, 2 2φ φ≠  leads to contradiction.  

For a general case with n inputs, one again uses the fact that 1 1φ =  to fix j jφ φ=  for j=2,…,n and then it is a 

tedious but straightforward step to show that n-input analogue of (C.4)-(C.5) has unique solution is j jβ β=  
for j=1,…,n almost everywhere. This proves part b. ■ 

 
Proof of Proposition 3. 
Under assumptions of the proposition, system (8)-(9) can be re-formulated as follows:  

[ | ] it
it it

it

B ⎡ ⎤
= Λ +⎢ ⎥

⎣ ⎦

F
X ε

M
,  (B.6) 

, 1

, 1

0
0

i tit it

i tit itR
−

−

Π⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦⎣ ⎦

FF υ
MM ω

,  (B.7) 

where B is the known matrix whose columns are selection vectors ei (that is ei is the ith column of matrix In) 
with unity in the row corresponding to the variable with a serially correlated measurement error, Mit is a 
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vector of measurement errors, R  is a diagonal nonsingular matrix with entries less than unity in absolute 
value (stationarity of measurement errors), 1( )it itE ′ = Ωω ω  is a diagonal nonsingular matrix, ( ) 0it jsE ′ =ω ω  for 
all i, j and 0s ≠ , and ( ) ( ) 0it js it jsE E′ ′= =ε ω υ ω  for all i, j, s.  

To prove global identification, it is sufficient to show that there is no rotation matrix T that preserves 
the structure of the model. Suppose that such T exits. Then a rotationally equivalent solution must satisfy 

11 12
11 21 12 22

21 22
[ ] [ ] [ ]

T T
B B T BT T BTT T

⎡ ⎤
Λ = Λ = Λ + Λ +⎢ ⎥

⎣ ⎦
.  

Hence,  
1 1

11 21 11 21T BT T BT− −Λ = Λ + ⇔ = Λ Λ − Λ  (B.8) 
1

12 22 12 22( )B T BT T B I T−= Λ + ⇔ = Λ −  (B.9) 
There are nonlinear restrictions imposed by uncorrelatedness of tυ  and tω  and block diagonal structure of 

0
0 R
Π⎡ ⎤
⎢ ⎥
⎣ ⎦

. In particular,  

n k×  restrictions: 21 11 22 1 12 0T T T T′ ′Ω + Ω =  (B.10) 
1
2 ( 1)k k − restrictions: 21 21 22 1 22T T T T′ ′Ω + Ω  is a diagonal matrix (B.11) 
n k× restrictions: 1

12 12 22 22 0T T T RT−Π − =  (B.12) 
n k× restrictions: 1 1 1

21 11 12 22 21 11 12 22 21 21( ) ( )T T T T T T T T T RT− − −− Π − =  (B.13) 
1 restriction: 22det | | 0T ≠  (B.14) 
1 restriction: 11det | | 0T ≠  (B.15) 
Because matrices , , ,B RΛ Π  have full rank, (B.8)-(B.15) form an overidentified system of quadratic 

equations. It is easy to verify that 11 12 21 22, 0, 0,n kT I T T T I= = = =  is a solution to the system for any 

1, , , RΩ Ω Π . It is straightforward to verify for low dimensional systems (i.e., , 3n k ≤ ) that T=I is the unique 
real solution. For higher dimensional cases it is hard to verify that T=I is the unique solution. However, since 
the system is highly overidentified, the measure of alternative solutions that satisfy (B.8)-(B.15) is zero.  

Note that restrictions on T22, T21 and T12 do not pin down the matrix T11. Even if 
12 21 220, 0, kT T T I= = = , 1

11T −= Λ Λ  and, therefore, the model is identified if and only if model (8)-(9) is 
uniquely identified.■ 

 
Proof of Proposition 4. 
Without loss of generality, consider the system without firm specific effects and measurement error itε . The 
residual of the quasi-differenced production function is 

, 1 , 1 2 1 2 1 , 1
ˆ ˆ ˆ ˆˆ ˆ ˆ( ) ( )( )it it i t it i t it i tu y y bL bL b b Iρ ρ ρ− − −= − − + = Λ − Λ + Λ − Λ Π −υ F , 

where ˆˆ,bρ  are “candidate” parameter values. This residual is orthogonal to inputs and output lagged two or 
more periods if and only if 2 1

ˆ ˆ( )( ) 0b IρΛ − Λ Π − =  because Fit is serially correlated while itυ  is serially 
uncorrelated.  

Note that b̂  is a 1 ( 1)n× −  vector and ρ̂  is a scalar. Hence, both 2 1
ˆ 0bΛ − Λ =  and ˆ 0IρΠ − =  are 

overidentified because each system has n equations. However, some rows of ˆ IρΠ −  can be non-zero when 
the corresponding columns of 2 1b̂Λ − Λ  are equal to zero and vice versa.  

Consider first a simple case where the matrix Π is diagonal. If ρ̂  is equal to Πjj, one of the diagonal 
entries of Π, one of the equations in 2 1

ˆ 0bΛ − Λ =  can be eliminated, the system becomes just identified and 
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1
1 2

ˆ
j jb −= Λ Λ  where jΛ i  is the matrix Λ i  without the jth column. The Blundell-Bond estimator assumes that the 

ρ̂  is equal to the autocorrelation coefficient for productivity aρ  so that b̂ β= . However, there are other 
solutions. For example, the above logic suggests that ρ̂  can be equal to the autocorrelation coefficient for 
wage shocks wρ  and this choice of ρ̂  gives a different solution for b̂ . It is straightforward to verify that 
these solutions are locally identified, i.e., the rank of the Jacobian is full:  

( ) ( )
1

1 2

1
2 1 2 1, 1 , 1

, 1
, 1 1,jj j j

j ji t i t
it i t it

it i t jja b

y bL
rank E rank E n

L L I
ρ

ρ
−

−
− −

−
−

= =Λ Λ

⎧ ⎫ ⎧ ⎫⎡ ⎤Λ − Λ Λ Λ− +⎛ ⎞⎡ ⎤⎪ ⎪ ⎪ ⎪′ ′= =⎢ ⎥⎜ ⎟⎨ ⎬ ⎨ ⎬⎢ ⎥⎜ ⎟− + Λ Π −Π⎢ ⎥⎣ ⎦⎝ ⎠⎪ ⎪ ⎪ ⎪⎣ ⎦⎩ ⎭⎩ ⎭

Z F Z . 

It follows that there can be n different solutions to 2 1
ˆ ˆ( )( ) 0b IρΛ − Λ Π − =  for the case with n inputs.  

Now suppose that Π is not diagonal. Let ρ̂  be equal to an eigenvalue of Π. Then 
ˆ( ) 1rank I nρΠ − = −  and, thus, one is back to the case with a diagonal Π, i.e., multiply 2 1b̂Λ − Λ  by a 

singular matrix. Hence, for each eigenvalue of Π there is a unique locally-identified solution for b̂ . Since Π 
can have n distinct eigenvalues (for n-1 inputs), there can be n solutions for b̂ .  
To prove the last result, note that if ρ̂  is equal to a repeated eigenvalue, the rank of ˆ( )IρΠ −  is at most n-2. 
Hence, at least two columns in 1 2,Λ Λ  can be deleted and 2 1

ˆ 0bΛ − Λ =  is underidentified so that there are 

infinitely many solutions for b̂ . ■ 
 
Proof of Proposition 5.  
This proof is for the case with multiple inputs which are collected in the vector Lit. Partition matrix Λ  so that 

follows 1

2

it iti i
it it it

it iti ia
Λ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤

= Λ + + = + +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥Λ⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

L wL L
F ε ε

Y Y Y
, where ,i iL Y  are time invariant effects. For 

convenience, I define ( )it itE ′ = ΣF F . It is sufficient to show that the rank of the Jacobian for the moment 
conditions does not have full rank, i.e., the rank of the Jacobian is smaller than the number of parameters in 
the model. Define , 1 , 1[ ]it it it i t i t it itϑ γ γ− −

′′ ′ ′≡ − = −Y L L Y Y V , which corresponds to the residual from quasi-
differenced production function. Apart from having a permanent component, the error term itϑ  has MA(1) 
structure because of the error term itε .  

Consider the level moments ( ) 0it itE ϑ ′ =Z  where , 2 , , 2 ,[ ]it i t i t k i t i t p− − − −
′′ ′ ′ ′= Δ Δ Δ ΔZ L L Y Y… … . The 

expected value of the Jacobian of the moment conditions is  

( )
, 3 , 2 , 1 , , 3 , 2 , 1 ,

, 1 , 3 , 2 , 1 , 1 , , 1 , 3 , 2 , 1 , 1 ,

, 1 , 3

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
(

it i t i t it i t k i t k it i t i t it i t p i t p

it it i t i t i t i t i t k i t k i t i t i t i t i t p i t p

i t i t

E E
− − − − − − − − − −

− − − − − − − − − − − − − −

− −

′ ′ ′ ′− − − −
′ ′ ′ ′ ′− = − − − −

L L L L L L L Y Y L Y Y
V Z L L L L L L L Y Y L Y Y

Y L

… …
… …

, 2 , 1 , 1 , , 1 , 3 , 2 , 1 , 1 ,) ( ) ( ) ( )i t i t i t k i t k i t i t i t i t i t p i t p− − − − − − − − − − − −

⎛ ⎞
⎜ ⎟

=⎜ ⎟
⎜ ⎟′ ′ ′ ′− − − −⎝ ⎠L Y L L Y Y Y Y Y Y… …

  

2 2
1 1 1 1 1 2 1 2

1 1
1 1 1 1 1 2 1 2

1 1
2 1 2 1 2 2 2 2

2 2
1 1 1 1 1 2 1 2

1 1
1 1 2 2

,

k p

k p

k p

k p

k p

D D D D
D D D D
D D D D

D D D D
D D D D

− −

− −

− −

⎡ ⎤Λ Π Λ Π Λ Π Λ Π
⎢ ⎥

= − Λ Π Λ Π Λ Π Λ Π =⎢ ⎥
⎢ ⎥Λ Π Λ Π Λ Π Λ Π⎣ ⎦
⎡ ⎤Λ Π Λ Π Λ Π Λ Π

= − ⎢ ⎥ΛΠ ΛΠ ΛΠ ΛΠ⎢ ⎥⎣ ⎦

… …
… …
… …

… …
… …

 

where 1 1 2 2( ) , ( )D I D I′ ′= − Π ΣΛ = −Π ΣΛ . Observe that the first row is 1
1

−Λ ΠΛ  times the second row; hence, 
the matrix ( )it itE ′−V Z  does not have full rank and parameters of the model are not identified.  
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Now consider the difference moment conditions ( ) {( ) } 0it it it it itE Eϑ γ′ ′Δ = Δ − Δ =Z Y V Z  where 

, 3 , , 3 ,[ ]it i t i t k i t i t p− − − −
′′ ′ ′ ′=Z L L Y Y… … . Find that the Jacobian is  

( )
, 1 , , 3 , 1 , , , , 1 , , 3 , 1 , ,

, 2 , 1 , 3 , 2 , 1 , , 2 , 1 , 3 , 2 , 1 ,

, 2 ,

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
(

i t i t i t i t i t i t i t k i t i t i t i t i t i t p

it it i t i t i t i t i t i t k i t i t i t i t i t i t p

i t i

E E
− − − − − − − −

− − − − − − − − − − − −

−

′ ′ ′ ′− − − −
′ ′ ′ ′ ′−Δ = − − − − −

−

L L L L L L L L L Y L L Y
V Z L L L L L L L L Y L L Y

Y Y

… …
… …

1 , 3 , 2 , 1 , , 2 , 1 , 3 , 2 , 1 ,) ( ) ( ) ( )t i t i t i t i t k i t i t i t i t i t i t p− − − − − − − − − − −

⎛ ⎞
⎜ ⎟

=⎜ ⎟
⎜ ⎟′ ′ ′ ′− − −⎝ ⎠L Y Y L Y Y Y Y Y Y… …

 

2 2
1 1 1 1 1 2 1 2

1 1
1 1 2 2

.
k p

k p

D D D D
D D D D− −

⎡ ⎤Λ Π Λ Π Λ Π Λ Π
= ⎢ ⎥ΛΠ ΛΠ ΛΠ ΛΠ⎢ ⎥⎣ ⎦

… …
… …

 

Hence, the difference moment conditions do not have full rank either because the first row is 1
1

−Λ ΠΛ  times 
the second row. The same conclusion follows for the case without measurement errors, i.e., 0it =ε .  

Now suppose that there is no firm-specific effect. Then {( ) } 0it it itE γ ′− =Y V Z  with 

, 2 , , 2 ,[ ]it i t i t k i t i t p− − − −
′′ ′ ′ ′=Z L L Y Y… …  is a set of valid moment conditions. However, the reduced rank is 

still a problem as the Jacobian does not have full rank:  

( )
2 2

1 1 1 1 1 2 1 2
1 1

1 1 2 2

k p

k pit itE − −

′ ′ ′ ′⎡ ⎤Λ Π ΣΛ Λ Π ΣΛ Λ Π ΣΛ Λ Π ΣΛ
′ = ⎢ ⎥′ ′ ′ ′ΛΠΣΛ ΛΠ ΣΛ ΛΠΣΛ ΛΠ ΣΛ⎢ ⎥⎣ ⎦

V Z
… …
… …

 

where the first row is 1
1

−Λ ΠΛ  times the second row.  

Now consider 1

2

it i i
it it it it it it

it i i

B
B

B
⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤

= Λ + + + = Λ + + +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

L L L
F υ ε F υ ε

Y Y Y
 that nests models where some 

of the inputs can response contemporaneously to changes in productivity (the matrix B is square). This 
modification also results in level and difference moments not having full rank because the structure of the 
moment conditions is not changed. For example, consider the difference moment conditions and find that the 
Jacobian is:  

( )
2 2

1 1 1 1 1 2 1 2
1 1

1 1 2 2

k p

k pit it

D D D D
E

D D D D− −

⎡ ⎤Λ Π Λ Π Λ Π Λ Π
′−Δ = +⎢ ⎥ΛΠ ΛΠ ΛΠ ΛΠ⎢ ⎥⎣ ⎦

V Z
… …
… …

 

1 1
1 3 1 3 1 4 1 4

2 2
3 3 4 4

k p

k p

D D D D
D D D D

− −

− −

⎡ ⎤Λ Π Λ Π Λ Π Λ Π
+ ⎢ ⎥Λ ΛΠ Λ ΛΠ⎢ ⎥⎣ ⎦

… …
… …

,  

where ( )it itEυ ′Σ = υ υ , 3 1( )D I Bυ ′= − Π Σ  and 4 2( )D I Bυ ′= − Π Σ . This matrix does not have full rank because 
the first row is equal to 1

1
−Λ ΠΛ  times the second row. ■ 

 
 

Proof of Proposition 6.  

I have shown in Proposition 5 that level and difference moment conditions yield the same Jacobian matrix: 
2 3 3 4 1

1 2 2 3 1

( ) ( ) ... ( )
...

d d

d d

D +

−

⎡ ⎤Ψ Γ − Γ Ψ Γ − Γ Ψ Γ − Γ
= ⎢ ⎥Γ − Γ Γ − Γ Γ − Γ⎣ ⎦

, 

where 1[0 ]p mI + −Ψ ≡ . Given assumption of the problem, identification of the Blundell-Bond estimator 
requires that ( ) 2( ) 1rank D m p= + − .  

Observe that 1 0( )k
k k I+ ′Γ − Γ = ϒΠ −Π Γ ϒ . Consider matrix 12

22

0 0
0 0

P
Π⎡ ⎤

= Ψ ⎢ ⎥Π⎣ ⎦
. Multiply the second 

row of D by P and subtract from the first row of D. Denote the resulting matrix with D1:  
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†
* 1
1

2 1
0 0 0

1 2 1
0 0 0

2 * †
0 0 0 1 1

( ) ( ) ... ( )
( ) ( ) ... ( )

( ) ( ) ... ( )

d

d

d

D
D

I I ID
I I I

I I I D D

−

−

−

⎡ ⎤′ ′ ′ΦΠ −Π Γ ϒ ΦΠ −Π Γ ϒ ΦΠ −Π Γ ϒ= =⎢ ⎥
′ ′ ′ϒΠ −Π Γ ϒ ϒΠ −Π Γ ϒ ϒΠ −Π Γ ϒ⎢ ⎥⎣ ⎦

ΦΠ⎡ ⎤ ⎡ ⎤′ ′ ′= − Π Γ ϒ Π −Π Γ ϒ Π −Π Γ ϒ =⎢ ⎥ ⎣ ⎦ϒΠ⎣ ⎦

 

where 13

23

0 0
0 0

Π⎡ ⎤
Φ = Ψ ⎢ ⎥Π⎣ ⎦

. The matrices D1 and D have the same rank. Observe that  

* †
1 1 1( ) min{ ( ), ( )}rank D rank D rank D≤  and 

13 33

23 33*
1

12 13

22 23

0 0
0 0

( )
0
0

rank D rank rank m n

⎛ ⎞Π Π⎡ ⎤⎡ ⎤
Ψ⎜ ⎟⎢ ⎥⎢ ⎥Π ΠΦΠ⎛ ⎞⎡ ⎤ ⎣ ⎦⎜ ⎟⎢ ⎥= = ≤ +⎜ ⎟⎢ ⎥ ⎜ ⎟⎢ ⎥ϒΠ Π Π⎡ ⎤⎣ ⎦⎝ ⎠ ⎜ ⎟⎢ ⎥⎢ ⎥⎜ ⎟Π Π⎢ ⎥⎣ ⎦⎣ ⎦⎝ ⎠

.  

Hence the model can be identified if 2( ) 1 2 1m n p m n p m+ ≥ + − ⇔ ≥ + − . ■ 
 

Proof of Proposition 7.  
Order entries of Xt so that the first element in Xt (and Gt) is output y. Without loss of generality suppose that 
there is only one freely-adjusted input l (labor) such that the first-order condition with respect to this input is 

t t ty l wφ− =  where φ  is some constant, t w tw e= X  is an exogenous shock, and ew is the selection vector (i.e., 
ew is equal to one at the position of wt in Xt and zero otherwise). Also, without loss of generality, assume that 
all other inputs are predetermined. Define yΠ  and lΠ  as rows of the matrix Π  that corresponds to the output 
yt and the freely adjusted input lt. By (A.5),  
 1 1( ) ( )y l y l

t t t t t w t w t k tB B y l w e e e Bφ φ φ− −Π − Π + − = − = = = Π +X υ X X υ .  
Since this holds for any Xt and υt, ( )y l

weφΠ − Π =  and ( )y l
wB B eφ− = . It follows that 12 12 0y lφΠ − Π =  and 

13 13 33
y l

weφΠ − Π = Π . Production function t L t t ty l K aα α= + +  imposes another restriction on Π : 

13 13 33 23
y l

L aeα αΠ − Π − Π = Π  and 12 12 22
y l

Lα αΠ − Π = Π . Using these restrictions and the proof of Proposition 6, 
one finds that the rank of the Jacobian matrix D is: 

1
13 23 3313 33

13 33
23 3323 33

23 33*
13 231 12 13

12 13
12 13

22 23
22 23

0 ( )00 0
000 0
0( ) ( )

0
0

0

L

L

ll

yy y

l l

rank D rank D rank rank rank

φ α

φ
φ α

α

α

−

−

Π − Π Π⎛ ⎞Π Π⎛ ⎞Π Π⎡ ⎤⎡ ⎤ ⎜ ⎟Ψ Π Π⎜ ⎟ Π Π⎢ ⎥⎢ ⎥ ⎜ ⎟Π Π⎣ ⎦⎜ ⎟⎢ ⎥ ⎜ ⎟ Π − Π≤ = = =Π Π⎜ ⎟⎢ ⎥Π Π ⎜ ⎟⎡ ⎤⎜ ⎟⎢ ⎥ Π Π Π⎜ ⎟⎢ ⎥⎜ ⎟Π Π⎢ ⎥⎣ ⎦⎣ ⎦ ⎜ ⎟⎝ ⎠ Π Π⎝ ⎠

1
13 23

22 23

L

l
φ α α−

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟− Π
⎜ ⎟⎜ ⎟Π Π⎝ ⎠

21 1
33

23 3323 33

3333

3333

22 2322 23

0 ( ) 0 0
00
0 2( ) 20
00

L La w

ww

aa

e e

rank rank e p me
ee

φ α φ α− −⎛ ⎞− Π ⎛ ⎞
⎜ ⎟ ⎜ ⎟Π ΠΠ Π⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟= = Π ≤ + −Π
⎜ ⎟ ⎜ ⎟ΠΠ⎜ ⎟ ⎜ ⎟

⎜ ⎟⎜ ⎟ Π ΠΠ Π ⎝ ⎠⎝ ⎠

 

 
The last equality follows from 33Π  being diagonal. Since the rank is less than 2(p+m-1), the estimator is not 
identified. ■ 
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Table 1. Profit share sπ as a function of returns to scale in the revenue function and the elasticity of the 
cost with respect to inputs.  

Elasticity of the cost  
with respect to inputs 

Returns to scale 
in the revenue 

function 1φ <  1φ ≈  1φ >  

1η <  small sπ large sπ large sπ 

1η ≈  negative sπ small sπ large sπ 

1η >  negative sπ negative sπ small sπ 
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Table 2. Estimates of Returns to Scale: One-output/one-input.  
 OLS SIV COV FE BB 
 (1) (2) (3) (4) (5) 

 
Parameterization A (no measurement error):  

Median bias 0.359 -0.001 0.001 0.272 0.221 
Standard deviation 0.003 0.013 0.006 0.003 0.112 
Root MSE 0.359 0.013 0.006 0.272 0.251 
      

Parameterization B (i.i.d. measurement error):  
Median bias 0.332 -0.001 0.001 0.217 0.225 
Standard deviation 0.004 0.039 0.007 0.005 0.259 
Root MSE 0.332 0.039 0.008 0.217 0.348 
      

Parameterization C (serially correlated measurement error):  
Median bias 0.288 -0.267 0.000 0.192 0.145 
Standard deviation 0.006 0.024 0.018 0.005 0.200 
Root MSE 0.288 0.269 0.018 0.193 0.247 
      

Parameterization D (correlated factor prices and productivity):  
Median bias 0.423 -1.773 0.001 0.313 0.223 
Standard deviation 0.004 0.323 0.008 0.005 0.413 
Root MSE 0.423 1.844 0.008 0.313 0.475 

 
Note: The table reports median bias, standard deviation and root MSE for OLS, Schmidt’s instrumental 
variables (SIV), covariance (COV), fixed effects (FE), and Blundell-Bond (BB) estimators. The data 
generating process is (12)-(15): one input and one output. Each experiment is simulated 1,000 times. In all 
experiments, 0.9, 0.5, 1a w a wυ υρ ρ σ σ= = = = . In parameterization A, ( , ) 0, 0w a

it it z yε ερ υ υ σ σ= = = . In 

parameterization B, ( , ) 0, 1w a
it it z yε ερ υ υ σ σ= = = . In parameterization C, ( , ) 0w a

it itρ υ υ = , 0yεσ = , 

,
z z
it z i t e iteε ρ ε −= + , 2 1eσ = , 0.8zρ = . In parameterization D, ( , ) 0.7, 0w a

it it z yε ερ υ υ σ σ= = = . See text for further 
details.  
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Table 3. Estimates of Returns to Scale: One-output/multi-input. 
OLS FE BB LP SIV COV Parameter values (1) (2) (3) (4) (5) (6) 

Parameterization A (no measurement error):  
Bias 0.033 -0.011 -0.019 0.001 -0.009 0.000 βK St. Dev. 0.004 0.003 0.054 0.003 0.100 0.007 

        

Bias 0.265 0.270 0.482 0.265 -0.001 -0.001 βL St. Dev. 0.006 0.006 0.206 0.006 0.034 0.010 
        

Bias 0.123 0.096 -0.302 0.087 0.004 0.000 βM St. Dev. 0.006 0.006 0.130 0.006 0.049 0.007 
        

Bias 0.421 0.356 0.161 0.353 -0.006 0.000 
St. Dev. 0.002 0.003 0.074 0.004 0.054 0.007 η 

Root MSE 0.421 0.356 0.177 0.353 0.054 0.007 
        

Parameterization B (i.i.d. measurement error):  
Bias 0.077 0.032 0.042 0.048 -0.017 0.000 βK St. Dev. 0.006 0.006 0.230 0.007 0.144 0.011 

        

Bias 0.269 0.259 0.254 0.269 -0.007 0.001 βL St. Dev. 0.007 0.008 0.274 0.007 0.077 0.025 
        

Bias 0.069 0.042 0.092 0.014 0.000 0.000 βM St. Dev. 0.007 0.008 0.264 0.010 0.099 0.038 
        

Bias 0.415 0.334 0.388 0.331 -0.024 0.001 
St. Dev. 0.003 0.005 0.260 0.008 0.126 0.025 η 

Root MSE 0.415 0.334 0.467 0.331 0.129 0.025 
        

Parameterization C (upward sloping labor supply curve):  
Bias 0.044 -0.002 -0.017 0.010 -0.075 0.000 βK St. Dev. 0.004 0.004 0.052 0.003 0.069 0.008 

        

Bias 0.443 0.446 0.791 0.443 1.810 -0.001 βL St. Dev. 0.009 0.009 0.285 0.009 0.120 0.017 
        

Bias 0.117 0.093 -0.297 0.083 -0.500 0.000 βM St. Dev. 0.006 0.006 0.108 0.006 0.026 0.008 
        

Bias 0.604 0.536 0.477 0.536 1.235 -0.001 
St. Dev. 0.004 0.005 0.178 0.006 0.045 0.013 η 

Root MSE 0.604 0.536 0.509 0.536 1.236 0.013 
 
Note: The table reports median bias, st. dev. and MSE of OLS, Schmidt’s instrumental variables (SIV), 
covariance (COV), fixed effects (FE), Blundell-Bond (BB), and Levinsohn-Petrin (LP) estimators. The data 
generating process is (19)-(22): three inputs and one output. The estimated production function is (18). Each 
experiment is simulated 1,000 times. In all parameterizations, βK=0.1η, βL=0.1η, βM=0.1η, η=0.55, ρr=0.5, 
ρw=0.6, Mp

ρ =0.4, ρa=0.9, 1Mr w apυ υ υυ
σ σ σ σ= = = = . In parameterization A, συy= σεk= σεl=0, 1φ = . In 

parameterization B, συy= σεk= σεl=1, 1φ = . In parameterization C, συy= σεk= σεl =0, 1.5φ = . See text for further 
details.  
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Table 4. Estimates of Returns to Scale: One-output/multi-input with adjustment costs 
OLS FE BB LP SIV COV Parameter values (1) (2) (3) (4) (5) (6) 

Parameterization A (no measurement error):  
βK Bias 0.169 0.250 0.285 0.187 3.714 -0.002 
 St. Dev. 0.011 0.025 0.495 0.014 0.512 0.044 
        

βL Bias 0.442 0.389 0.345 0.442 -0.093 0.000 
 St. Dev. 0.007 0.006 0.170 0.007 0.084 0.018 
        

βM Bias -0.096 -0.087 0.106 -0.186 -0.079 0.000 
 St. Dev. 0.005 0.005 0.163 0.007 0.035 0.011 
        

Bias 0.516 0.552 0.735 0.443 3.542 -0.002 
St. Dev. 0.009 0.023 0.454 0.011 0.444 0.045 η 

Root MSE 0.266 0.305 0.747 0.197 12.741 0.002 
        

Parameterization B (i.i.d. measurement error):  
βK Bias 0.153 0.059 0.032 0.154 -0.055 0.008 
 St. Dev. 0.011 0.014 0.178 0.011 61.911 0.061 
        

βL Bias 0.369 0.317 1.105 0.369 2.385 -0.001 
 St. Dev. 0.008 0.008 0.339 0.008 51.015 0.034 
        

βM Bias -0.037 -0.047 -0.696 -0.086 -1.893 -0.002 
 St. Dev. 0.008 0.007 0.312 0.010 35.505 0.018 
        

Bias 0.486 0.329 0.441 0.437 0.437 0.005 
St. Dev. 0.009 0.015 0.230 0.014 46.387 0.057 η 

Root MSE 0.236 0.108 0.248 0.191 2151.950 0.003 
        

Parameterization C (upward sloping labor supply curve):  
βK Bias -0.014 -0.021 0.339 -0.004 3.026 0.000 
 St. Dev. 0.005 0.013 0.454 0.016 0.369 0.046 
        

βL Bias 0.455 0.398 0.628 0.455 -0.014 -0.001 
 St. Dev. 0.005 0.005 0.228 0.005 0.059 0.028 
        

βM Bias 0.039 0.062 -0.140 0.021 -0.012 0.000 
 St. Dev. 0.004 0.004 0.074 0.010 0.032 0.011 

        

Bias 0.481 0.439 0.827 0.472 2.999 -0.001 
St. Dev. 0.003 0.011 0.442 0.011 0.315 0.048 η 

Root MSE 0.231 0.193 0.880 0.223 9.096 0.002 
 
Note: The table reports median bias, st. dev. and MSE of OLS, Schmidt’s instrumental variables (SIV), 
covariance (COV), fixed effects (FE), Blundell-Bond (BB), and Levinsohn-Petrin (LP) estimators. The data 
generating process is (26). The estimated production function is (18). Each experiment is simulated 1,000 
times. In all parameterizations, βK=0.1η, βL=0.1η, βM=0.1η, η=0.55, ρr=0.5, ρw=0.6, Mp

ρ =0.4, ρa=0.9, 

1Mr w apυ υ υυ
σ σ σ σ= = = = , 6ψ = . In parameterization A, συy= σεk= σεl=0, 1φ = . In parameterization B, συy= 

σεk= σεl=1, 1φ = . In parameterization C, συy= σεk= σεl =0, 1.5φ = . See text for further details.  
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Table 5. Descriptive statistics.  

Variable variation Mean Std. Dev. Min Max 
overall 4.190 1.636 0.269 9.437 

between  1.548 0.793 8.816 Ln(real value added) 
within  0.528 1.790 6.355 
overall 7.649 1.799 3.432 12.492 

between  1.701 3.935 12.330 Ln(real capital stock) 
within  0.448 4.973 9.627 
overall 3.763 1.078 2.303 7.145 

between  0.986 2.303 6.709 Ln(number of employees) 
within  0.325 1.982 5.095 

 
Note: This table reports descriptive statistics for Chilean manufacturing plants in SIC 3240 industry 
(Manufacture of footware). The time span is from 1982 to 1996. Value added is nominal value added deflated 
by the industry price index. Employment includes production and non-production workers. Capital stock, 
which includes machines and structures, is constructed by perpetual inventory method. See references cited in 
the text for further information.  
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Table 6. Covariance and autocovariance matrices.  

 Yt Kt Lt 
Yt 261.5 256.3 168.0 
Kt 256.3 344.8 176.3 
Lt 168.0 176.3 126.0 

Yt-1 244.8 251.3 163.7 
Kt-1 249.2 333.4 171.9 
Lt-1 163.5 172.5 120.0 
Yt-2 239.3 248.0 160.7 
Kt-2 244.0 324.0 167.8 
Lt-2 159.5 169.2 116.0 
Yt-3 233.3 245.1 157.3 
Kt-3 239.5 316.1 164.2 
Lt-3 155.6 166.5 112.3 
Yt-4 230.4 243.6 155.3 
Kt-4 234.1 308.2 159.9 
Lt-4 152.4 163.5 109.2 

 
Note: This table presents covariance and autocovariance matrices for logs of value added (Yt), capital stock 
(Kt) and labor (Lt) after projecting these variables on the complete set of time dummies. See note to Table 5 
for further details.  
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Table 7. Estimation results.  

 COV OLS FE SIV  LP  BB BB-2 
 (1) (2) (3) (4) (5) (6) (7) 

0.498 0.198 0.146 -0.398 0.135 0.197 0.2099 βK 
[0.423, 0.514] (0.017) (0.029) (0.050) (0.054) (0.130) (0.123) 

0.697 1.105 0.677 2.952 0.672 0.676 0.6897 βL 
[0.510, 0.730] (0.029) (0.047) (0.131) (0.073) (0.132) (0.128) 

1.420       φ  
[1.307, 1.578]       

η  1.172 1.302 0.822    2.554    0.612    0.874    0.899 
 [1.008, 1.226] (0.017) (0.043) (0.089) (0.112) (0.161) (0.160) 
        

Factor prices and technology: standard deviation of innovations and serial correlation 
0.0306 0.9059 -0.0602 -0.2719 συa 

[0.002, 0.408] 
ρaa 

[0.732, 0.961]
ρaw 

[-0.163, 0.031]
ρar 

[-0.463, -0.042]
0.0163 0.3118 0.8177 0.0398 συw 

[0.001, 0.442] 
ρwa 

[-0.315, 0.533]
ρww 

[0.074, 0.915]
ρwr 

[-0.090, 0.264]
0.0657 -0.5024 -0.0359 0.1579 συr 

[0.001, 0.520] 
ρra 

[-0.795, -0.147]
ρwa 

[-0.181, 0.097]
ρrr 

[-0.443, 0.408]
        

Measurement errors: standard deviation of innovations and serial correlation 
1.862 0.143     σεv 

[1.665, 2.008] 
ρv 

[-0.110, 0.439]     
1.8052 0.9305     σεk 

[1.581, 1.972] 
ρk 

[0.903, 0.957]     
1.5222 0.7609     σkl 

[1.331, 1.668] 
ρl 

[0.651, 0.844]     
 

Note: The COV model is described in (27)-(38). 95% bootstrap confidence interval is in square parentheses. FE is fixed effects, LP is Levinsohn-
Petrin estimator, BB is Blundell-Bond estimator, SIV is Schmidt’s instrumental variables estimator. BB estimator is unrestricted and the reported 
coefficients are on the current kit and lit. Standard errors are in parentheses. R2 in OLS regression is 0.92. The LM test does not reject AR(1) model 
for the error term in the BB estimator.  
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Figure 1. Kernel density of estimates for returns to scale: BB, OLS, FE, COV, IV estimators 
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Note: The figure plots kernel densities (Epanechnikov kernel; plug-in optimal bandwidth) of the returns to 
scale in the revenue function for OLS, Schmidt’s instrumental variables (SIV), covariance (COV), fixed 
effects (FE), and Bond-Blundell (BB) estimators. Parameter values of the data generating process are reported 
in Panel A, Table 2. Returns to scale are on horizontal axis. The data generating process is (12)-(15). The 
estimated production function is (16). Each experiment is simulated 1,000 times. See text and Table 2 for 
further details.  
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Figure 2. Kernel density of estimates for returns to scale: BB, OLS, FE, LP, COV, IV, 
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Note: The figure plots kernel densities (Epanechnikov kernel; plug-in optimal bandwidth) of the returns to 
scale in the revenue function for OLS, Schmidt’s instrumental variables (SIV), covariance (COV), fixed 
effects (FE), and Bond-Blundell (BB), and Levinsohn-Petrin (LP) estimators. Parameter values of the data 
generating process are reported in Panel A, Table 3. Returns to scale are on horizontal axis. The data 
generating process is (19)-(22): three inputs and one output. The estimated production function is (18). Each 
experiment is simulated 1,000 times. See text and Table 3 for further details.  
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Figure 3. Profit share and bias in returns to scale  
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Note: The figure reports the bias in the estimated returns to scale in the revenue functions for various values 
of the profit share. The lines are from lowess which smoothes over 100 replications for each value of the 
profit share. Parameterization is as in Panel A of Table 3. The estimated production function is (18). BB is 
Blundell-Bond estimator, FE is fixed effects, SIV is Schmidt’s IV, LP is Levinsohn-Petrin estimator, COV is 
the covariance estimator. SIV essentially coincides with COV in this figure.  
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